

Sélection de solutions pour lutter contre les maladies du bois : premiers résultats sur les effets des produits

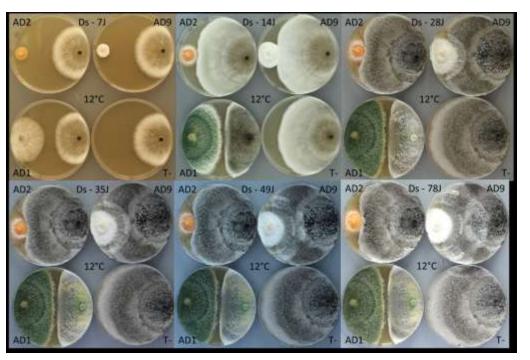
Fontaine Florence, Cindy Coppin, Patricia Letousey, Mickaël Cadiou, Pascal Lecomte, Philippe Larignon, Patrice Dubournet, Nicolas Hyzy, Marion Sineux, Olivier Zekri


Les maladies du bois de la vigne, quelles solutions à disposition?

- 3 principales maladies : Esca, dépérissement à Botryosphaeria, Eutypiose
- Pertes économiques conséquentes pour la filière viticole
- 2001, interdiction de l'utilisation de l'arsénite de sodium en France
- Moyens de lutte à disposition : pratiques culturales (taille, curetage, regreffage...), produits chimiques (utilisés selon les pays), stratégies alternatives (biocontrôle, biostimulants)
- Zoom sur le biocontrôle : Trichoderma sp, Bacillus sp.
- Trichoderma atroviride Esquive® WP, efficacité partielle

Comment améliorer son efficacité, combinaison de solutions?

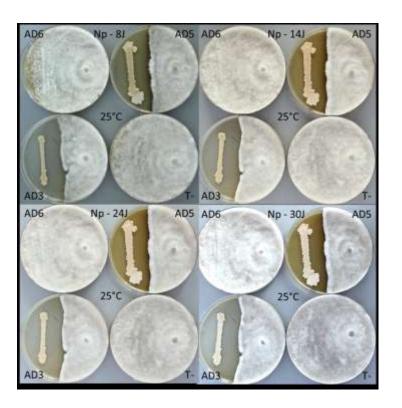
Partenaire apporteur	Type de solution	Code ADVANTAGE	Description de la solution
Agrauxine	Champignon	AD1	Trichoderma atroviride I-1237 (solution de référence Esquive® WP)
Agrauxine	Champignon	AD2	Champignon (non retenue après les essais <i>in vitro</i> : remplacée par AD1 bis, une autre formulation de AD1)
Agrauxine	Bactérie	AD3	Bactérie
Agrauxine	Dérivé de levure	AD4	Substance naturelle SDP (pas d'essais <i>in vitro</i>)
Bayer	Bactérie	AD5	Bactérie
Bayer	Bactérie	AD6	Bactérie
Bayer	Substance chimique	AD7	Substance chimique
Bayer	Substance chimique	AD8	Substance chimique
IFV	Champignon	AD9	Champignon


Botryosphaeriacées Diplodia seriata Neofusicoccum parvum

Eutypa lata Phaeoacremonium minimum Phaeomoniella chlamydospora

- Solutions biologiques (micro-organismes):
 - tests de confrontation directe en boite de Petri entre la solution candidate et 5 champignons pathogènes impliqués dans les maladies du bois de la vigne
 - résultats = pourcentage de réduction de croissance du pathogène
 - Les 3 solutions fongiques

pathogène		AD1	AD2	AD9
Ds	12°C	59	15	15
	25°C	56	6	14
Np	12°C	67	46	50
	25°C	73	13	20
El	12°C	44	5	8
	25°C	44	0	0
Pal	12°C	25	0	0
(Pmin)	25°C	79	25	40
Pch	12°C	75	16	19
	25°C	68	28	35


Exemple de tests de confrontation directe des solutions fongiques avec le pathogène *Diplodia seriata* à 12°C après 7, 14, 28, 35, 49 et 78 jours d'incubation.

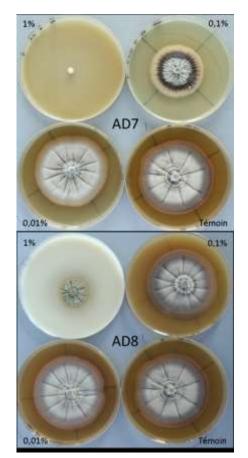
La modalité pathogène seul est toujours située en bas à droite (T-).

- Solutions biologiques (micro-organismes):
 - tests de confrontation directe en boite de Petri entre la solution candidate et 5 champignons pathogènes impliqués dans les maladies du bois de la vigne
 - résultats = pourcentage de réduction de croissance du pathogène
 - * Les 3 solutions bactériennes

pathogène	AD3	AD5	AD6
Ds	33	30	22
Np	14	7	0
El	36	37	3
Pal (Pmin)	18	43	9
Pch	40	25	9

Exemple de tests de confrontation directe des solutions bactériennes avec le pathogène *Neofusicoccum parvum* à 25°C après 8, 14, 24, 30 jours d'incubation.

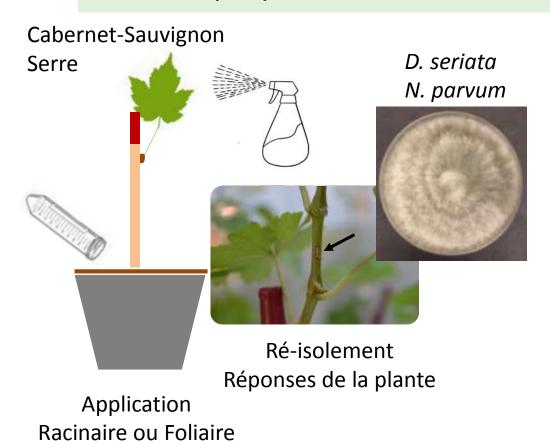
La modalité pathogène seul est toujours située en bas à droite (T-).

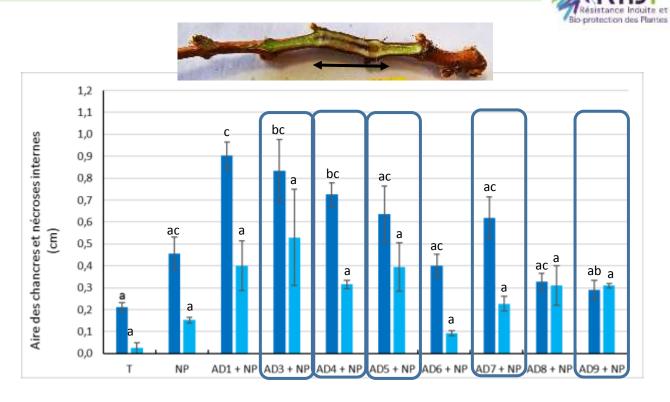

• Les 2 solutions chimiques:

- tests biocides en boite de Petri où la solution candidate est étalée sur la gélose puis le champignon pathogène est repiqué au centre de la boite (étude réalisée avec 5 champignons pathogènes impliqués dans les maladies du bois de la vigne)
- 3 doses testées: 0.01 0.1 1%
- résultats chiffrés = pourcentage de réduction de croissance du pathogène avec la dose 0,1%

pathogène	AD7	AD8
Ds	56	47
Np	64	15
El	88	49
Pal (Pmin)	28	6
Pch	100	81

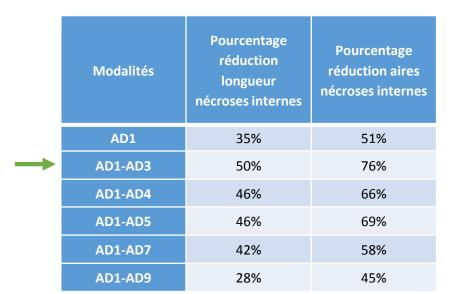
Exemple de tests biocides avec les solutions chimiques et le pathogène *Phaeoacremonium minimum* (aleophilum) à 25°C.


La modalité pathogène seul est toujours située en bas à droite.

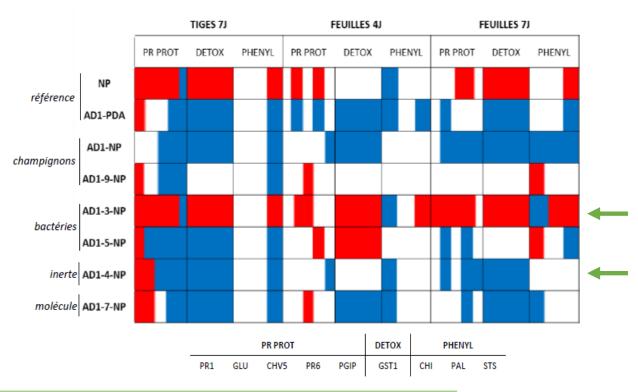


Solutions avec le meilleur potentiel d'efficacité: AD1, AD3, AD5, AD7, AD8, AD9

Parmi les solutions testées, lesquelles sont efficaces *in planta* pour protéger la vigne contre 2 champignons impliqués dans le dépérissement aux Botryosphaeriacées ?



Application racinaire


Sélection des solutions AD3, AD4, AD5, AD7 et AD9 à tester en combinaison avec AD1

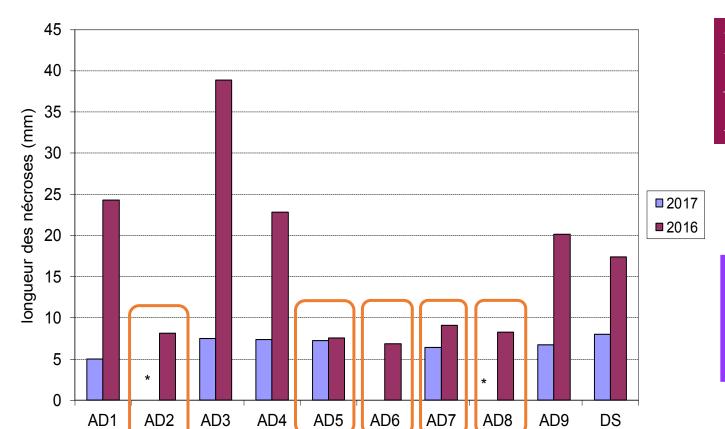
Quelles sont les combinaisons de solutions avec AD1 qui ont donné des résultats intéressants sous serre ?

Réponses de la plante - Feuilles

AD1-AD3 : forte réduction des nécroses et une induction des réponses de la plante AD1-5 > AD1-4 > AD1-7 > AD1-9 > AD1

Quel est le potentiel de protection des solutions en lien avec des contaminations annuelles dans le vignoble ?

- Cépages : Mourvèdre (2016), Cabernet franc (2017)
- Blessure à l'aide d'un scalpel au niveau du troisième mérithalle
- Application des solutions sur cette blessure ou sur feuillage (AD4) en combinaison (2017) ou non (2016) avec AD1. Deuxième traitement une semaine après le premier (2017)
- Apport de l'agent pathogène (Botryosphaeria) le lendemain de la protection
- Prélèvements des échantillons 4 mois après le début de l'essai
- · Mesure des nécroses et isolements, tests statistiques



• Expérimentation effectuée au cours de la floraison, 8 répétitions par modalité

Quel est le potentiel de protection des solutions en lien avec des contaminations annuelles dans le vignoble ?

solutions

Inhibition du développement des *Botryosphaeria* suite aux traitements AD2, AD5, AD6, AD7 et AD8.

Combinaison avec AD1 : pas d'amélioration de l'efficacité d'AD1 envers les *Botryosphaeria*

Effet des solutions en association (2017) ou non (2016) avec AD1 envers le développement de *Diplodia seriata* (DS) mesuré par la longueur des nécroses qu'il provoque.

Quel est le potentiel des solutions pour protéger les plaies de taille au vignoble ?

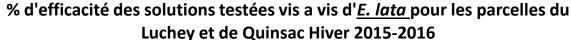
Méthode CEB n°155 « Eutypiose »

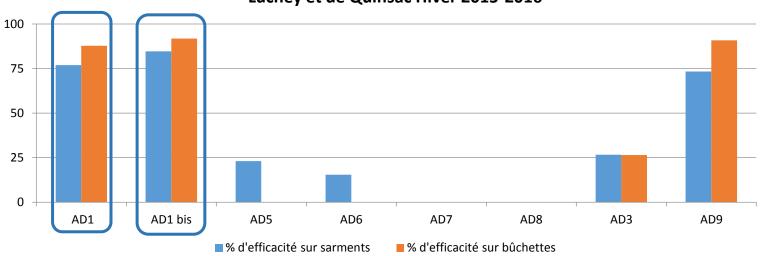
Où et quand? région bordelaise, Cabernet Sauvignon hivers 2015-2016 et 2016-2017

Principe : des sarments sont taillés, traités préventivement, puis contaminés artificiellement par un inoculum préparé au laboratoire. Après incubation, l'infection est vérifiée par ré-isolement des champignons inoculés au laboratoire.

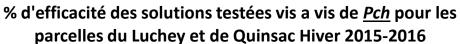
Pathogènes inoculés : Eutypa lata et Phaeomoniella chlamydospora

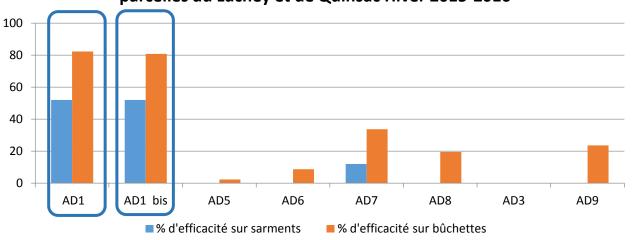
Variables mesurées : % de sarments infectés (sur 30)


% de bûchettes infectées (sur 750)



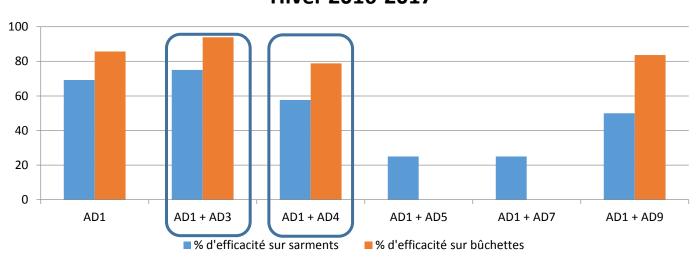
Evaluer les solutions candidates disponibles sur plaies de taille

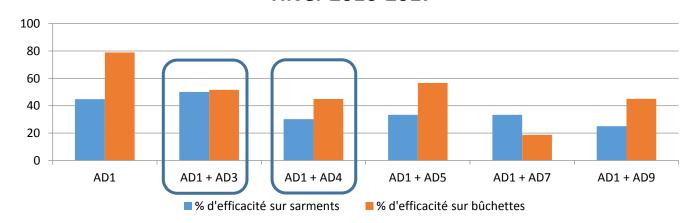




Hiver 2015-2016

Les solutions candidates ont montré des potentiels très variables **AD1** a présenté le meilleur potentiel




Tester des combinaisons de solutions avec AD1, soit cinq combinaisons, sur plaies de taille

% d'efficacité des solutions testées vis-à-vis d' *E. lata* Hiver 2016-2017

Hiver 2016-2017

% d'efficacité des solutions testées vis-à-vis de *Pch*Hiver 2016-2017

Les combinaisons les plus performantes sont celles qui ont associé **AD1-AD3** et **AD1-AD4**

(AD9 n'étant pas retenu)

Ce qu'il faut retenir....

- Travail collaboratif entre différents partenaires/complémentarité des compétences
- Homogénéisation des méthodologies
- Un travail progressif, allant de l'*in vitro* à l'*in planta* en conditions contrôlées, pour terminer à des applications au **vignoble**
- Le développement de stratégies de protection combinant plusieurs solutions contre les MBV
- Au départ du projet 9 solutions, puis à l'arrivée 2 solutions (AD4, AD5) sélectionnées pour être testées au vignoble en combinaison avec Esquive® WP (AD1) en conditions de production

La suite à plus ou moins long terme

- Essais au champ sur **10 parcelles en 2018 et 2019** pour confirmer l'efficacité de protection contre les MBV des **2 combinaisons** de solutions sélectionnées
- Si résultats positifs, deux nouvelles solutions phytosanitaires de biocontrôle pourraient être disponibles sur le marché d'ici 3 à 5 ans pour lutter contre les MBV en combinaison avec Esquive® WP

Remerciements à tous les partenaires

