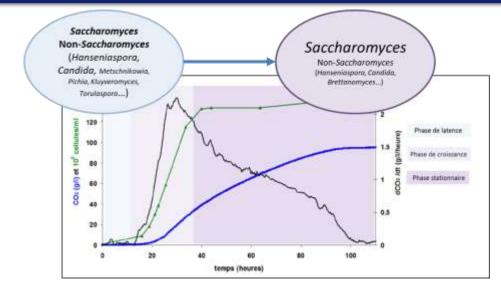


POTENTIALITES ŒNOLOGIQUES ET AROMATIQUES DES LEVURES NON-SACCHAROMYCES

Marie-Charlotte COLOSIO


La Recherche vous parle 17 décembre 2020

Levures non Saccharomyces...

- Groupe majoritaire lors des étapes pré-fermentaires, minoritaire lors de la fermentation alcoolique (1 à 10%)
- Vaste groupe de micro-organismes
 - Taxonomie
 - Propriétés technologiques

- Les genres les plus fréquemment rencontrées en œnologie :
 - Hanseniaspora,
 - Candida,
 - Issatchenkia,
 - Pichia,
 - Kluyveromyces,
 - Metschnikowia,
 - Zygosaccharomyces,
 - Torulaspora, Debaryomyces,et Brettanomyces

Levures non Saccharomyces...

Aptitudes métaboliques originales / S. cerevisiae :

- Possibilités d'assimilation ou de dégradation de certains substrats (acides)
- Production de molécules intéressantes (glycérol...), acide lactique et d'arômes fermentaires
- Réduction du taux d'éthanol...
- Faible production d'acidité volatile
- Rôle de bioprotection

Coinoculation ou inoculation séquentielle (48 à 72 h)

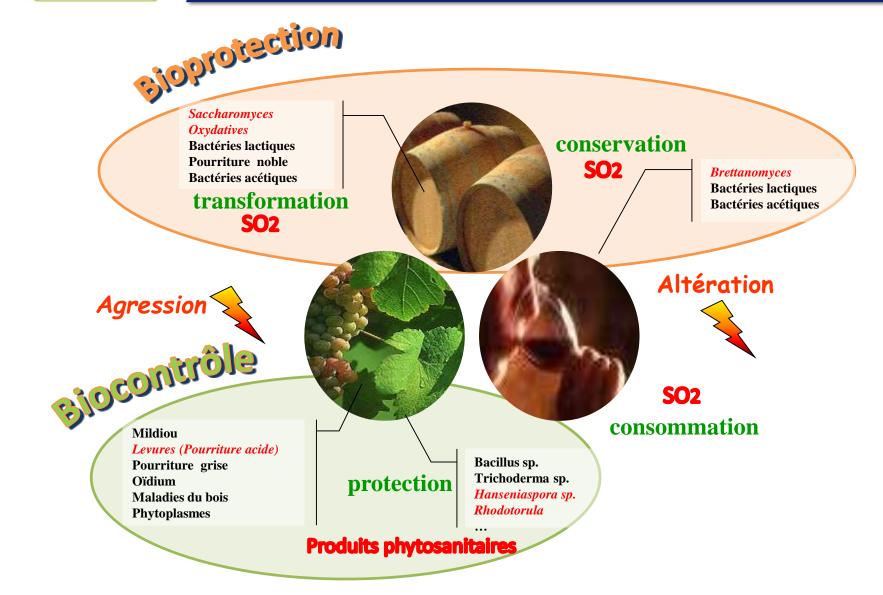
L'utilisation de *S. cerevisiae* permet le maintien des exigences technologiques propres au bon déroulement de la FA

Levures non Saccharomyces...

Caractérisation des levures non-Saccharomyces commercialisées en laboratoire

Objectif: définir certaines propriétés technologiques intéressantes afin d'aider le vinificateur à faire son choix parmi les espèces (et marques) proposées sur le marché.

- Déroulement de la fermentation alcoolique (Temps de latence, vitesse de fermentation, tolérance à l'éthanol, rendement sucre/éthanol ...)
- Production de certaines composés (H2S, acide acétique ...)
- Assimilation ou dégradation de certains substrats (acides ...)
- Tolérance au SO2


Rédaction de fiches levures, intégrées sur le site www.vignevin.com, dans l'outil « Fiches levures »

Intérêt des levures non-Saccharomyces en Bioprotection

Biocontrôle / Bioprotection

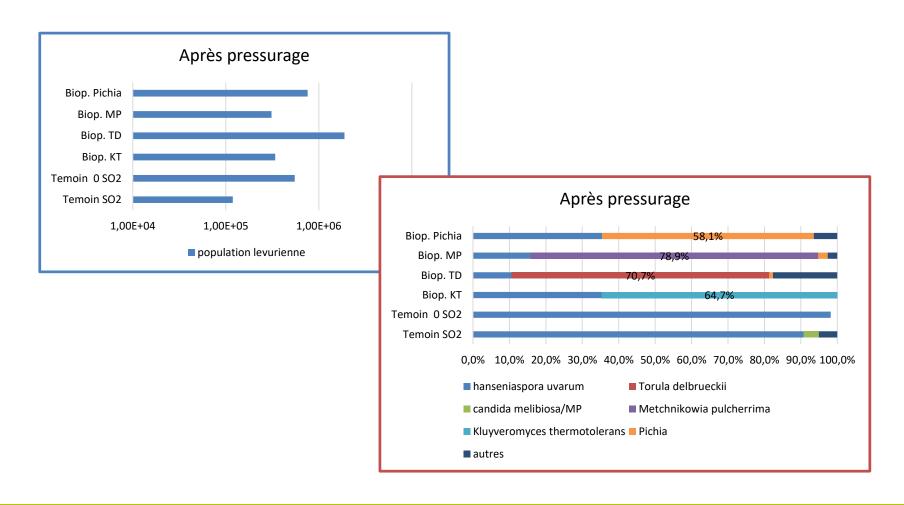
Contexte

Aujourd'hui les objectifs tant en viticulture, qu'en œnologie sont d'atteindre une protection suffisante des cultures et des produits transformés, tout en respectant l'environnement et la santé humaine (du viticulteur au consommateur).

- La demande des viticulteurs : des pratiques culturales (traitements)
 plus respectueuses de l'homme et de l'environnement (innocuité des produits, praticité de mise en œuvre)
- La demande des consommateurs : des produits sains (jus de raisin ou vins avec des doses réduites ou sans sulfites considérés comme allergènes)

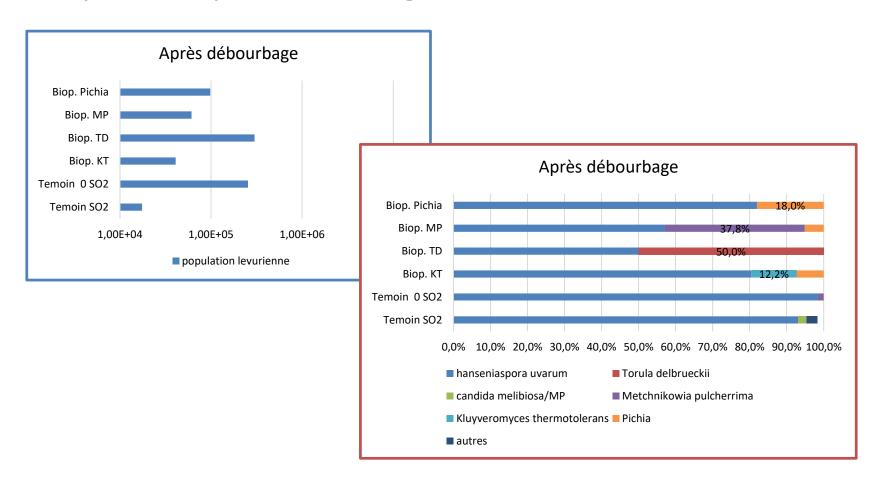
Bioprotection Vendanges

- Mécanisation de la vendange : baies entières, éclatées, jus, feuilles, pétioles....
- Libération de jus : apparition d'un milieu favorable au développement microbien : Candida, Pichia, Hanseniaspora, Metschnikowia, Torulaspora, Saccharomyces, Brettanomyces
- Objectif de la bioprotection de la vendange: occuper le milieu rapidement pour les compétiteurs et éviter le développement des organismes indésirables (Beaucoup de non-Saccharomyces et de bactéries sont néfastes pour la qualité du vin)
- 2014-2016 Projet VSS « Vins Sans Sulfite » Labellisé par Végépolys / travail sur la protection de la vendange entre la vigne et la presse par une bioprotection de celle-ci par des levures sélectionnées
 - brumisation d'une solution de bio-protection (S. cerevisiae) sur les baies de raisins

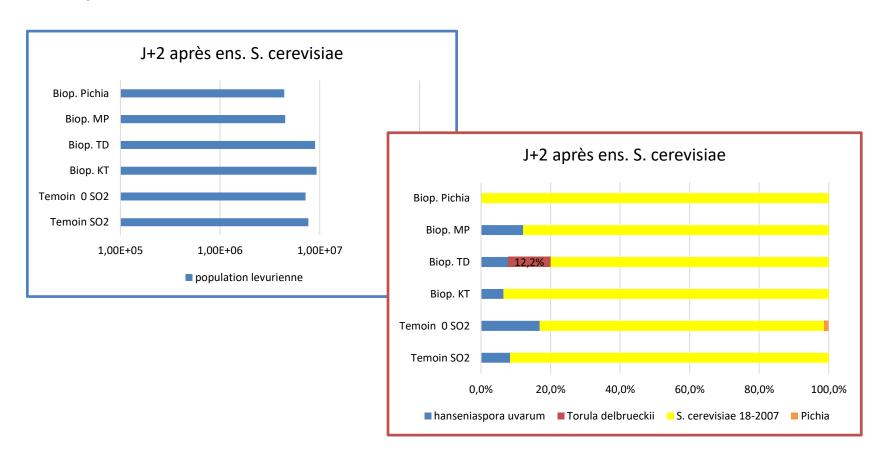

Depuis 2016 – Projet régionaux Utilisation de **non – Saccharomyces** commerciales

EX. Projet Val de Loire

code	Sur vendange éraflée (blanc)	Après débourbage
SO2 + Sacch	SO2	IOC 18-2007
Sacch	Sans SO2	IOC 18-2007
PK + Sacch	Sans SO2 / Pichia kluyveri (Frootzen)	IOC 18-2007
TD + Sacch	Sans SO2 / Torulaspora delbrueckii (Zymaflore alpha)	IOC 18-2007
KTh + Sacch	Sans SO2 / Kluyveromyces thermotolerans (Levulia Alcomeno)	IOC 18-2007
MP + Sacch	Sans SO2 / Metschnikowia pulcherrima (Levulia Pulcherrima)	IOC 18-2007



Macération de 4h avant pressurage avec ou sans bioprotection



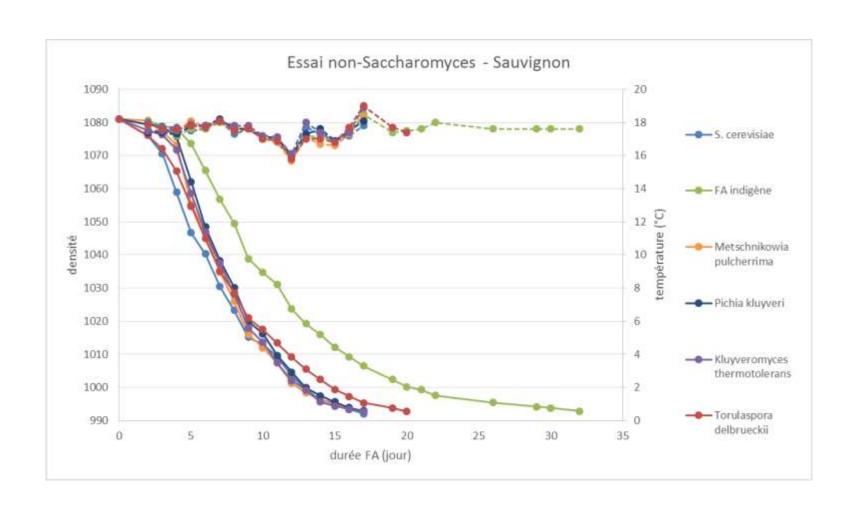
Population après débourbage

Population en début de fermentation

Bioprotection Vendanges

Points acquis:

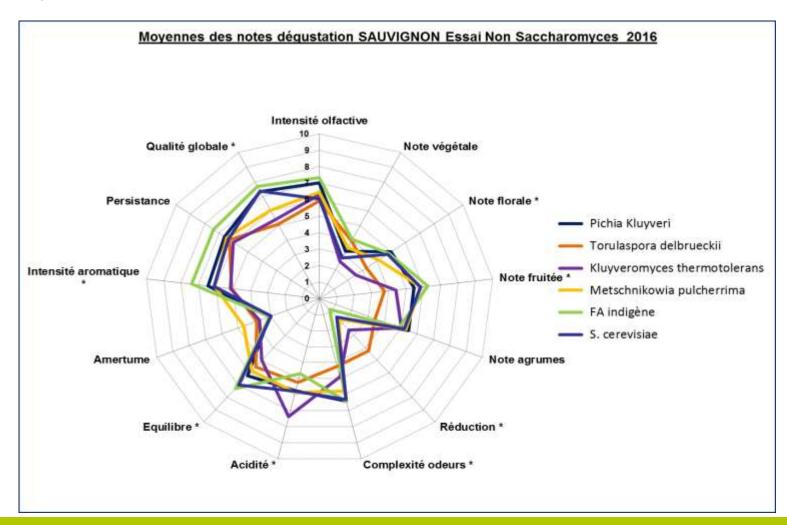
- Développement en laboratoire de tests adaptés à l'utilisation de levures sur la vendange (caractérisation spécifique, résistance pesticides/cuivre, mis au point du protocole d'utilisation des levures...).
- Importance des doses et espèces utilisées (risque de départ en FA)
- Pour les vins rosés: Bioprotection ne permet pas la gestion des oxydations : solution à coupler avec d'autres alternatives au sulfites : acide ascorbiques, gaz neutres ... A intégrer à un itinéraire global


• Perspectives:

- Impact de la bioprotection sur le déclenchement de la FML.
- Impact de la bioprotection sur Brettanomyces

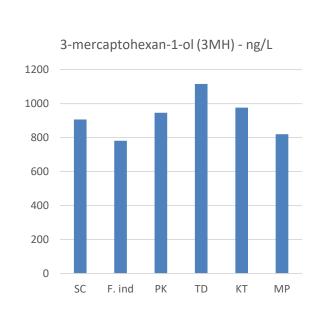
Intérêt des levures non-Saccharomyces en préfermentaire

Consommation de l'azote en début de fermentation (J+2)


	azote assimilable (mg/L)	Pourcentage d'azote assimilable consommé	azote ammoniacal (mg/L)	Pourcentage d'azote ammoniacal consommé	azote alpha aminé (mg/L)	Pourcentage d'azote alpha aminé consommé
S. cerevisiae	84	33%	25	22%	59	37%
FA indigène	114	NS	34	NS	80	15%
Metschnikowia pulcherrima	117	NS	35	NS	82	NS
Pichia kluyveri	115	NS	33	NS	82	NS
Kluyveromyces thermotolerans	107	15%	32	NS	75	<mark>20%</mark>
Torulaspora delbrueckii	84	<mark>33%</mark>	25	22%	59	37%

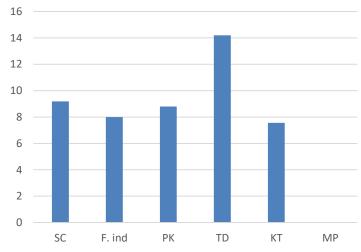
Analyse fin FA

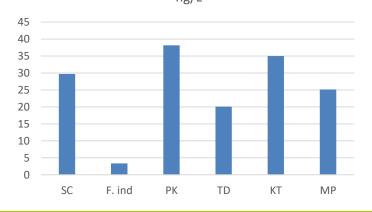
	TAV	sucres	Ac. totale	Ac. volatile pH		Ac. L malique	Ac. tartrique	DO420
	% vol	g/L	g H ₂ SO ₄ /L	g H ₂ SO ₄ /L		g/L	g/L	
S. cerevisiae	12,17	2,1	3,34	0,23	3,42	2,6	1,6	0,140
FA indigène	12,14	3,4	3,24	0,36	3,49	2,5	1,6	0,124
Metschnikowia pulcherrima	12,16	1,4	3,56	0,23	3,4	1,6	1,6	0,142
Pichia kluyveri	12,07	3,2	3,58	0,22	3,43	2,5	1,5	0,128
Kluyveromyces thermotolerans	11,98	1,1	4,81	0,25	3,28	2,3	1,4	0,137
Torulaspora delbrueckii	12,08	1,4	3,75	0,27	3,41	2,0	1,5	0,123

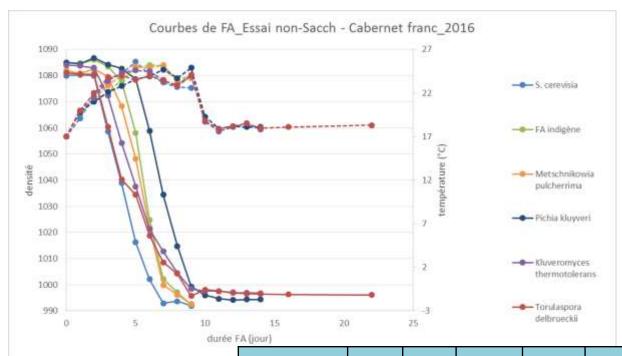


Analyse sensorielle

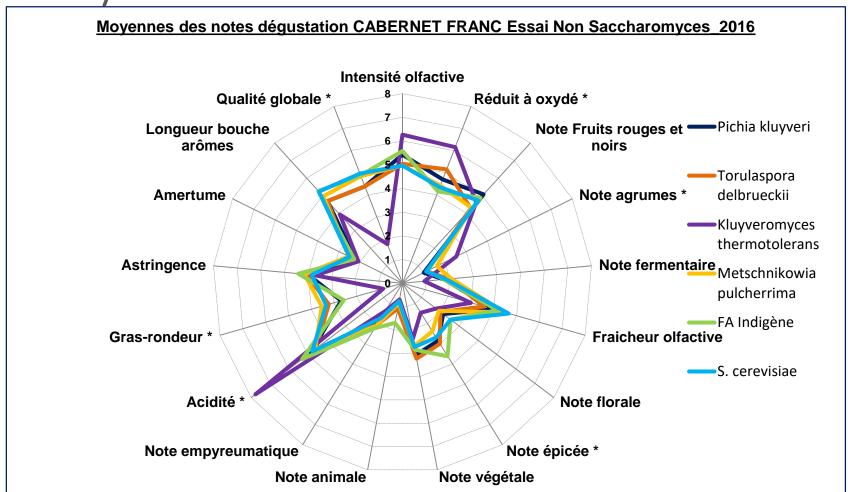
Analyse des composés aromatiques





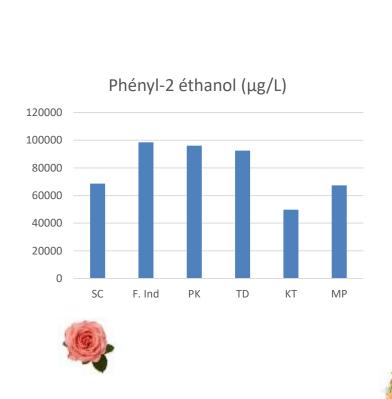

4-méthyl-4-sulfanylpentan-2-one (4MMP) - ng/L

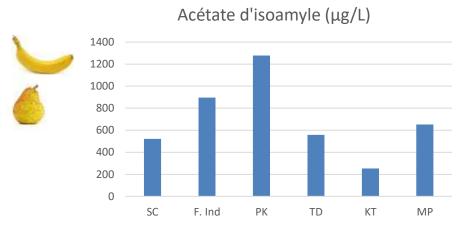
Vinifications 2016 Cabernet franc

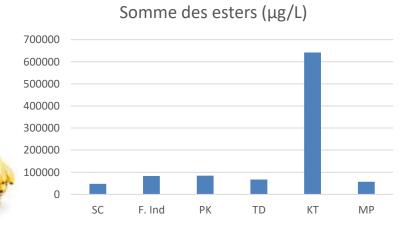


	TAV	sucres	Ac. totale	Ac. Acétique	pН	Iindice polyphénols totaux = A280 nm	IC' = DO 420 + DO 520 + DO 620	Anthocyanes
	% vol	g/L	g H ₂ SO ₄ /L	g/L				mg/L
S. cerevisiae	12.3	0.0	3.50	0.28	3.51	38,6	9,0	373
FA indigène	12.3	0.1	3.90	0.33	3.45	42,7	9,5	390
Metschnikowia pulcherrima	12.2	0.0	3.50	0.21	3.49	41,1	9,4	403
Pichia kluyveri	12.2	0.0	3.85	0.29	3.46	40,2	9,9	407
Kluyveromyces thermotolerans	11.9	0.3	8.35	0.22	3.14	39,1	14,8	242
Torulaspora delbrueckii	12.0	1.0	4.10	0.55	3.47	38,0	8,9	419

Vinifications 2016 Cabernet fanc


Analyse sensorielle

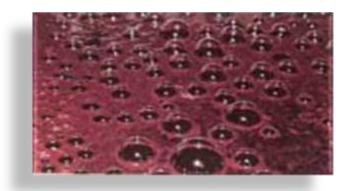




Vinifications 2016 Cabernet franc

Analyse des composés aromatiques

Levures non-Saccharomyces / stade préfermentaire


- Profils aromatiques et organoleptiques différents de ceux obtenus grâce à la flore indigène ou une Saccharomyces seule
- Profils organoleptiques différents suivant les souches de non-Saccharomyces utilisées
- Cas particulier de Kluyveromyces thermotolerans, inadaptée pour les rouges de Loire (acidification), mais intéressante pour la diminution de TAV

Merci de votre attention

Projets réalisés avec le soutien financier d'Interloire, des régions Pays de Loire et Centre-Val de Loire.