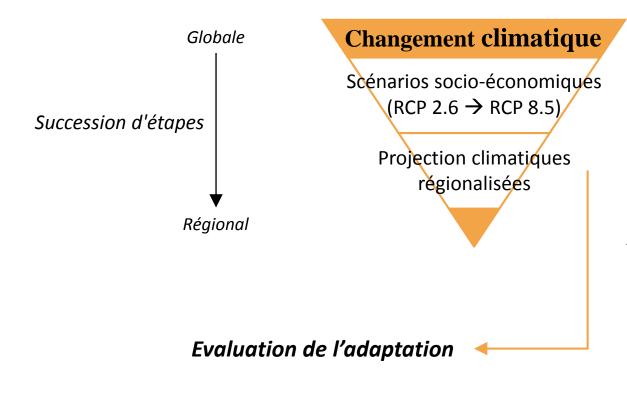
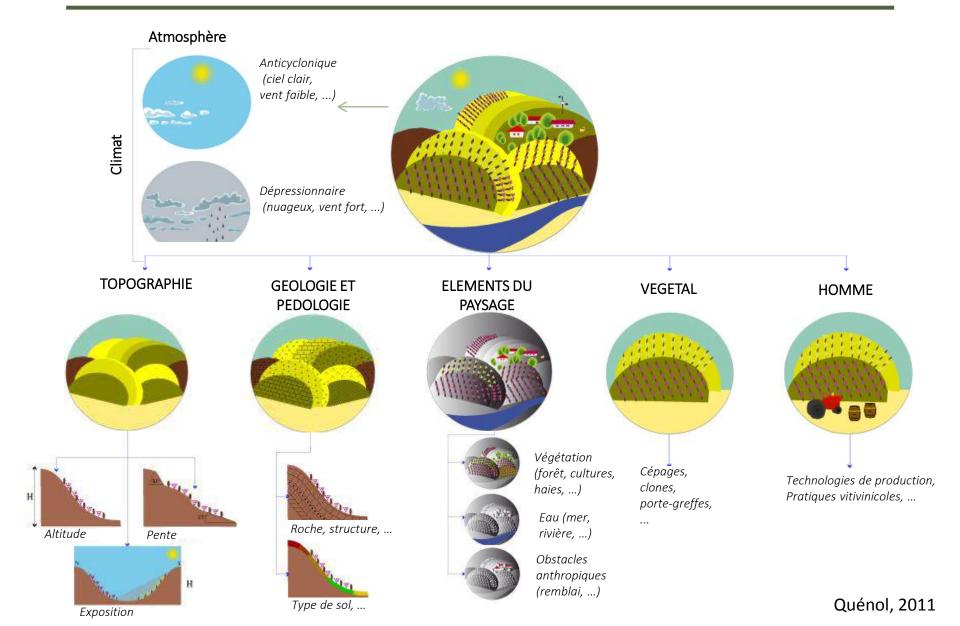


CONSTRUCTION D'UNE ADAPTATION LOCALE DES PRATIQUES VITICOLES AU CHANGEMENT CLIMATIQUE

Etienne Neethling, Gérard Barbeau, Hervé Quénol etienne.neethling@gmail.com


Comment adapter notre viticulture à l'évolution du climat Jeudi 17 novembre 2016, Montreuil-Bellay

Contexte et problématique


Adaptation au changement climatique

→ Approche par scénario-climatique

Analyse des impacts biophysiques sur la viticulture

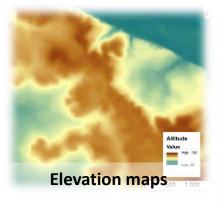
Complexité spatiale de la viticulture

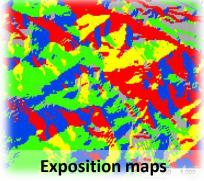
Comment étudier l'adaptation à l'échelle des vignobles ?

Dispositif de mesures climatiques et agronomiques

Sites d'étude dans les vignobles d'Anjou-Saumur

- 1. Coteaux du Layon (500 ha)
 - Chenin blanc
- 2. Saumur Champigny (900 ha)
 - Cabernet franc


1) Preliminary study of local environment


Topography (25m DTM)

- Altitude
- Slope
- Exposition
- Nearness to rivers
- Landscape openness, etc...

Soil characteristics (1:10 000 – Cellule Terroir Viticole)

- Naturel terroir units
- Texture
- Depth
- Soil water holding capacity

1) Preliminary study of local environment

Topography (25m DTM)

- Altitude
- Slope
- Exposition
- Nearness to rivers
- Landscape openness, etc...

Soil characteristics (1:10 000 – Cellule Terroir Viticole)

- Naturel terroir units
- Texture
- Depth
- Soil water holding capacity

2) Network of climate instruments

Coteaux du Layon

- 5 Weather stations
- 25 Temperature sensors
- 3 Rain gauges

Saumur Champigny

- 7 Weather stations
- 35 Temperature sensors
- 3 Rain gauges

1) Preliminary study of local environment

Topography (25m DTM)

- Altitude
- Slope
- Exposition
- Nearness to rivers
- Landscape openness, etc...

Soil characteristics (1:10 000 – Cellule Terroir Viticole)

- Naturel terroir units
- Texture
- Depth
- Soil water holding capacity

2) Network of climate instruments

Coteaux du Layon

- 5 Weather stations
- 25 Temperature sensors
- 3 Rain gauges

Saumur Champigny

- 7 Weather stations
- 35 Temperature sensors
- 3 Rain gauges

3) Viticultural measurements

Coteaux du Layon

 12 plots of Chenin blanc

Saumur Champigny

 12 plots of Cabernet franc

Growing season and ripening period:

- Phenological observations
- Berry composition analysis
- Isotopic ratio of carbon 12 and 13

1) Preliminary study of local environment

Topography (25m DTM)

- Altitude
- Slope
- Exposition
- Nearness to rivers
- Landscape openness, etc...

Soil characteristics (1:10 000 – Cellule Terroir Viticole)

- Naturel terroir units
- Texture
- Depth
- Soil water holding capacity

2) Network of climate instruments

Coteaux du Layon

- 5 Weather stations
- 25 Temperature sensors
- 3 Rain gauges

Saumur Champigny

- 7 Weather stations
- 35 Temperature sensors
- 3 Rain gauges

3) Viticultural measurements

Coteaux du Layon

12 plots of Chenin blanc

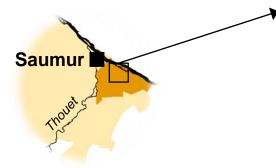
Saumur Champigny

 12 plots of Cabernet franc

Growing season and ripening period:

- Phenological observations
- Berry composition analysis
- Isotopic ratio of carbon 12 and 13

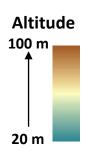
4) Data analysis

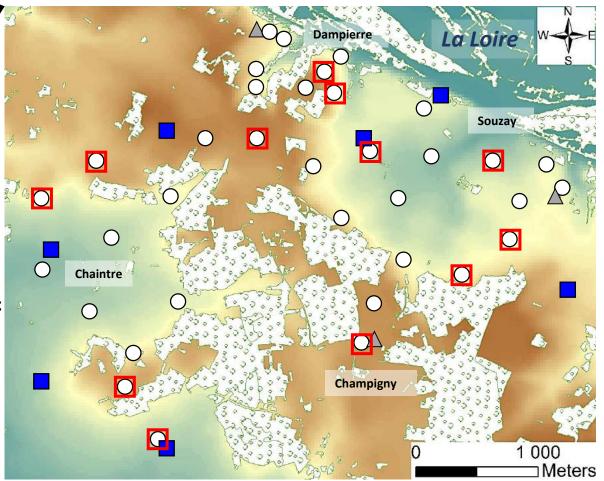

Climate data

- Temperature variables
- Bioclimatic indices
- Water balances

Agronomic data

- Precocity indices of phenological stages
- Maturity indices

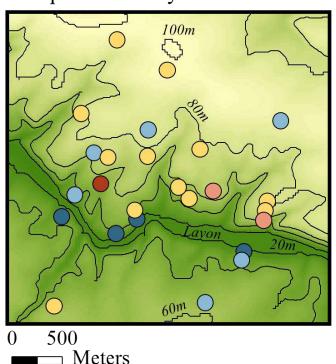

Site d'étude dans l'AOP Saumur Champigny



- Capteur de température
- **A** Pluviomètre
- Station météorologique
- Parcelles de Cabernet franc

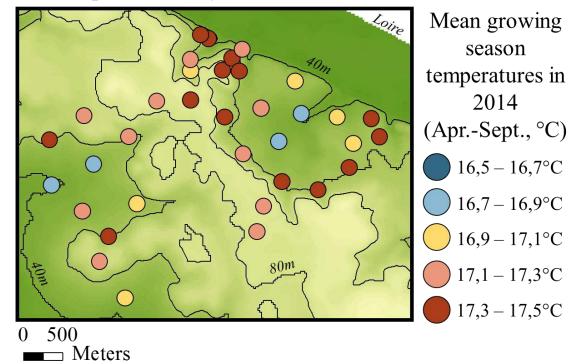
Végétation (Forets, bois, haies, buissons)

A l'échelle fine des vignobles, quelle est la variabilité spatiale du climat et du comportement de la vigne ?



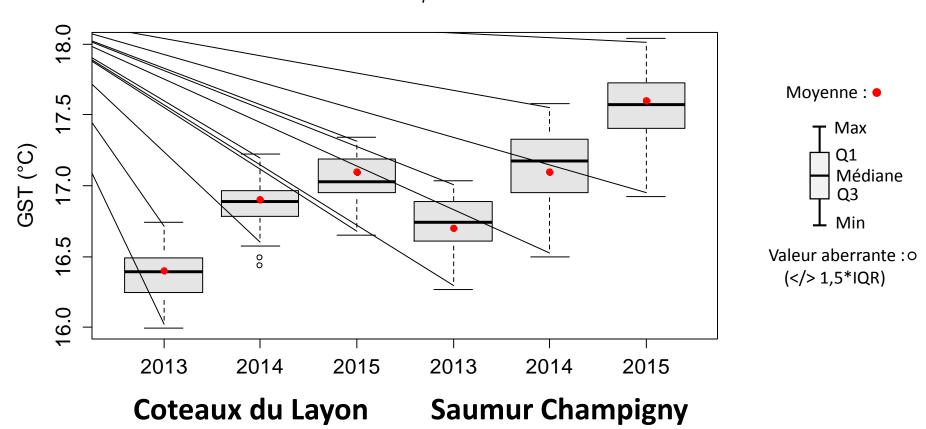
Variabilité climatique

→ Forte variabilité spatiale des températures


AOP Coteaux du Layon

Grapevine variety: Chenin blanc

AOP Saumur Champigny


Grapevine variety: Cabernet franc

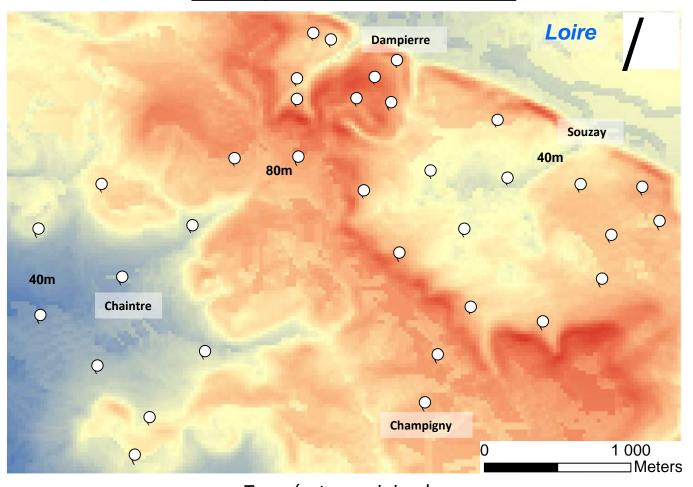
Variabilité climatique

→ Forte variabilité spatiale des températures

Figure : Variabilité spatiale de la température moyenne (°C) d'avril à septembre

Variabilité spatiale du fonctionnement de la vigne

	Floraison	Véraison	Indice de Maturité
Coteaux du Layon (Chenin)			(5 semaines après la véraison)
2013	4j (30/06 → 04/07)	6j (29/08 → 04/09)	17,5 (21,3 → 38,8)
2014	4j (13/06 → 17/06)	6j (18/08 → 24/08)	28,0 (25,0 → 53,0)
2015	6j (09/06 → 15/06)	9j (10/08 → 19/08)	15,2 (29,8 → 45,0)
Saumur Champigny (Cabernet franc)			
2013	3j (27/06 → 30/06)	7j (31/08 → 07/09)	9,5 (29,9 > 39,4)
2014	5j (09/06 → 14/06)	8j (19/08 → 27/08)	10,4 (32,8 → 43,2)
2015	5j (06/06 → 11/06)	11j (11/08 → 22/08)	19,1 (37,1 → 56,2)

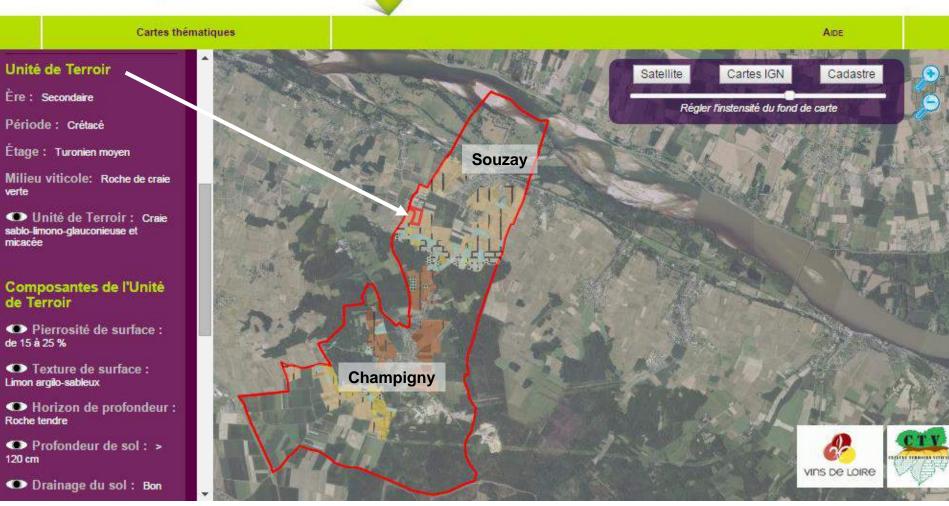

A l'échelle fine des terroirs viticoles

- Forte variabilité spatiale :
 - Degré-jours plus importants → stades phénologiques plus précoces et des indices de maturité plus élevées
 - Expliquée aussi par les caractéristiques physiques du sol et les pratiques viticoles

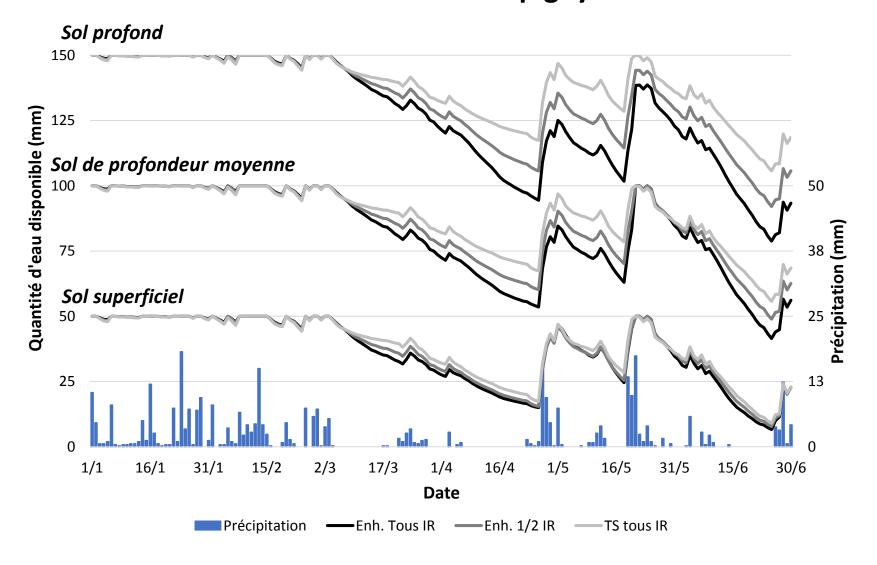
Adaptation à la variabilité climatique et au changement climatique, quelles sont les informations disponibles?

Exemple : Modélisation de la température minimale lors d'un épisode de gel

Exemple du 29 avril 2013



Température minimale 3,0°C


O Capteur de température

Reliant les données du sol à haute résolution avec les observations climatologiques

Exemple: Modélisation de l'évolution du bilan hydrique dans l'AOP Saumur Champigny

Conclusion et perspectives

- Confrontés aux changements climatiques actuels, les viticulteurs sont sollicités à repenser leurs pratiques et stratégies viticoles
 - Adaptation au changement climatique implique de nombreux questionnements :
 - Quels sont les impacts attendus à court et à long terme ?
 - > Comment l'adaptation doit-elle être effectuée dans l'espace ?
- A l'aide de mesures climatiques et agronomiques adaptées
 - → Forte variabilité spatiale du climat local a été mise en évidence
 - → S'est traduite par des différences au niveau de la phénologie de la vigne et de la composition des raisins
- Dans le contexte du changement climatique
 - → Connaitre les variations climatiques à échelle fine doit permettre de mieux évaluer et anticiper le comportement de la vigne
 - → Cette connaissance de la variabilité spatiale du climat apparait comme un outil d'adaptation

LIFE ADVICLIM

ADapatation of VIticulture to CLIMate change: High resolution observations of adaptation scenarii for viticulture

Under the contract number: LIFE13 ENV/FR/001512

Actions du projet Life-ADVICLIM

- A. Observation et modélisation climatique et agronomique à fine échelle
- B. Adaptation et atténuation des pratiques viticoles au changement climatique
- C. Évaluation de l'impact des actions B
- D. Valorisation

http://www.adviclim.eu/fr/

<u>D'autres sites de démonstration :</u>

La rioja (Espagne) Marlborough (NZ) Cafayate (Argentine) Vale dos vinhedos (Brasil)

