

Comparaison d'un itinéraire viticole biologique et biodynamique: Impact de traitements à base de silice sur la vigne

et la qualité du raisin

MEUNIER, Michel ^{1*}, SIRET, René ¹, BILLÉ, Antoine ² ROGIERS, Suzy ³, GURR, Geoff ^{4,3}, PATRON, Corinne ¹, MAURY, Chantal ¹

Groupe ESA, Unité de Recherche GRAPPE - UMT VINITERA, 55 rue Rabelais, 49007 Angers Cedex 01 – France
 Maison Langlois-Chateau, 3 rue Léopold Palustre - Saint Hilaire Saint Florent 49400 Saumur-France
 Charles Sturt University Locked Bag 588 WAGGA WAGGA NSW 2678 - Australia
 The University of Sydney, PO Box 883, Orange NSW 2800 - Australia

*m.meunier@groupe-esa.com

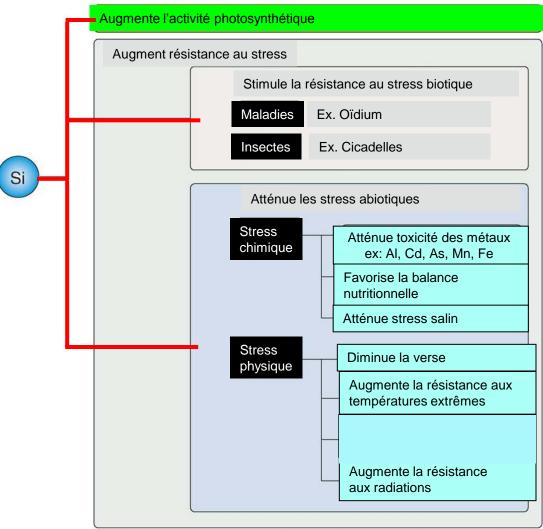
La recherche vous parle 29 janvier 2013

Silice (Si):

-Deuxièmes élément le plus abondant dans le sol

(50-70% masse) (Ma and Jamaji, 2006).

- -Si est peu accessible par la plante, surtout en sol érodé et ancien (Heckman and Wolf, 2009)
- -Toutes plantes germant et poussant dans le sol contient Si dans leurs tissus.



M. Meunier, R. Siret, A.Billé S. Rogiers,

G. Gurr

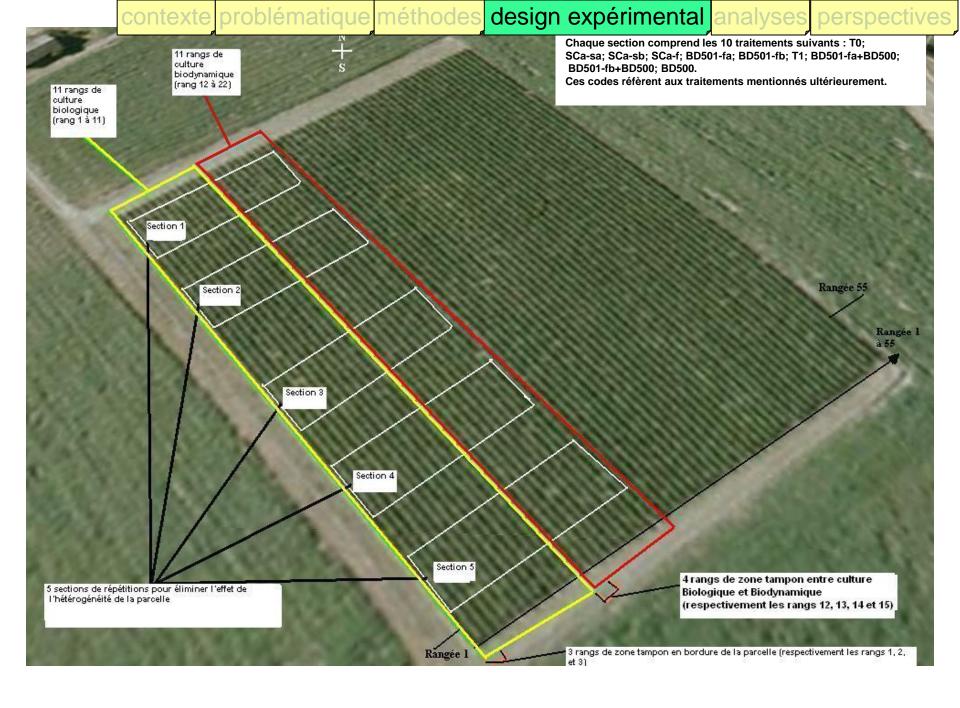
Effets de la silice sur la plante

Ma, JF, et Yamaji, N., (2006)

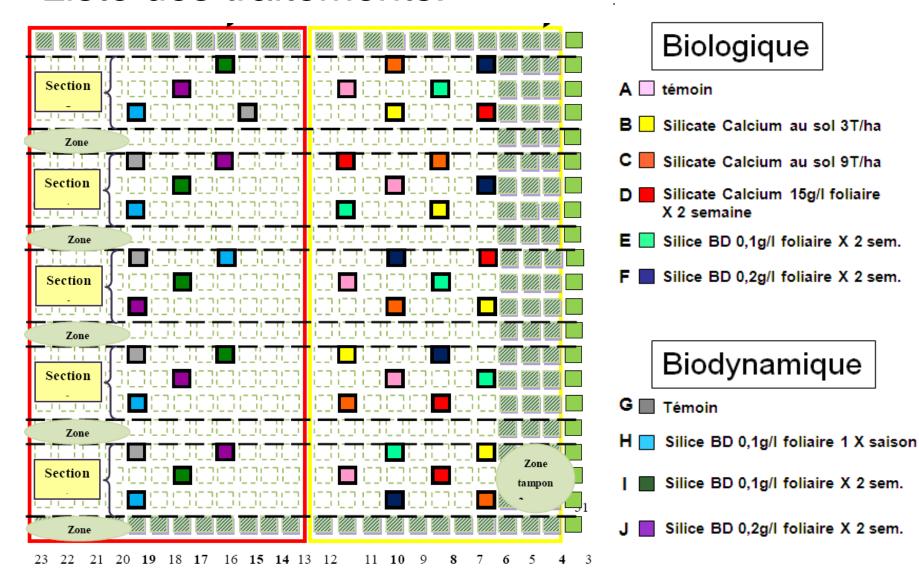
- Objectivation des effets de la silice sur la vigne
 - Pratique utilisé en culture biologique et biodynamique. Est-ce qu'on connait les effets?

 Objectiver les itinéraires techniques au vignoble

Chenin Blanc planté en 1998.


Expérimentation sur 3 millésimes successifs (2010, 2011, 2012)

Apport au sol: Silicate de calcium



Apport en pulvérisation foliaire:

Préparation biodynamique 501 Silicate de calcium broyé

Introduction Liste des traitements:

Introduction

Liste des paramètres:

Analyse de sol
Vigueur
longueur des tiges
Indice chlorophylle
surface foliaire
Analyse minérale des feuilles
Taux de nouaison
Nombre de pépins par baies
Observation des maladies

Analyse des composantes chimique du raisin Analyse sensorielle des baies Analyse de la texture des baies Micro-fermentations

Biologique

- A Témoin
- B 🗌 Silicate Calcium au sol 3T/ha
- C Silicate Calcium au sol 9T/ha
- D Silicate Calcium 15g/l foliaire
 X 2 semaine
- E 🔲 Silice BD 0,1g/l foliaire X 2 sem.
- F Silice BD 0,2g/I foliaire X 2 sem.

Biodynamique

- G Témoin
- H Silice BD 0,1g/l foliaire 1 X saison
- | Silice BD 0,1g/l foliaire X 2 sem.
- J Silice BD 0,2g/l foliaire X 2 sem.

Introduction

Liste des paramètres:

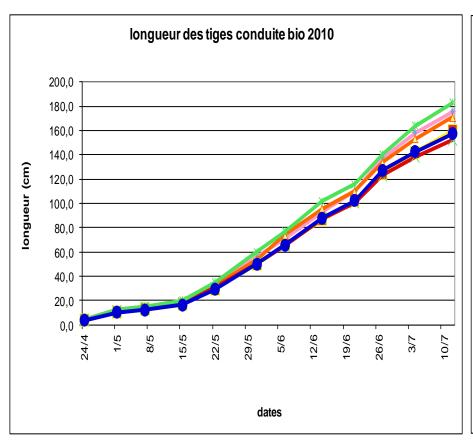
Analyse de sol
Vigueur
longueur des tiges
Indice chlorophylle
surface foliaire
Analyse minérale des feuilles
Taux de nouaison
Nombre de pépins par baies
Observation des maladies

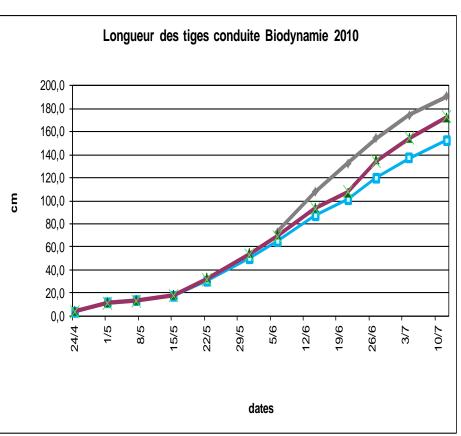
Analyse des composantes chimique du raisin

Analyse sensorielle des baies

Analyse de la texture des baies

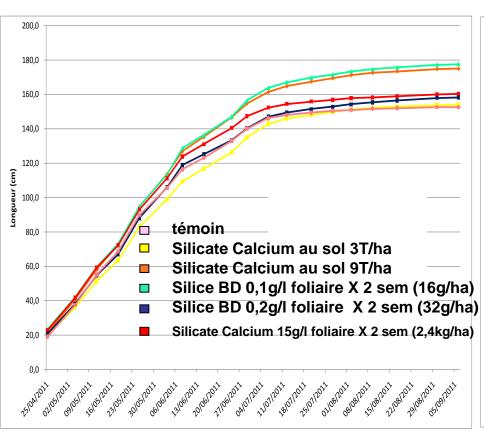
Micro-fermentations

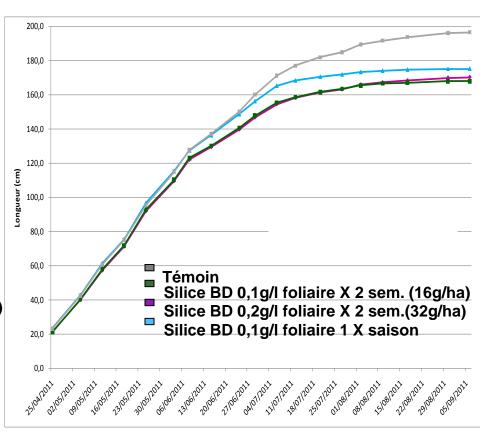

Biologique


- A Témoin
- B Silicate Calcium au sol 3T/ha
- C Silicate Calcium au sol 9T/ha
- D Silicate Calcium 15g/l foliaire
 X 2 semaine
- E 🔲 Silice BD 0,1g/l foliaire X 2 sem.
- F Silice BD 0,2g/I foliaire X 2 sem.

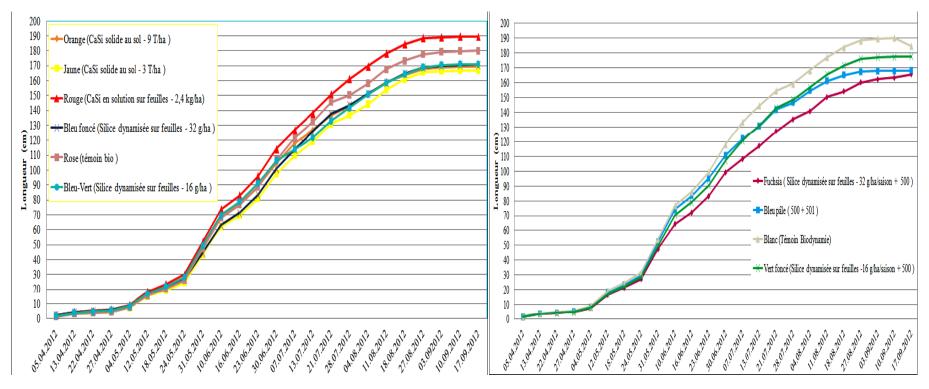
Biodynamique

- G Témoin
- H Silice BD 0,1g/l foliaire 1 X saison
- | Silice BD 0,1g/l foliaire X 2 sem.
- J Silice BD 0,2g/l foliaire X 2 sem.


Evaluation de la croissance 2010



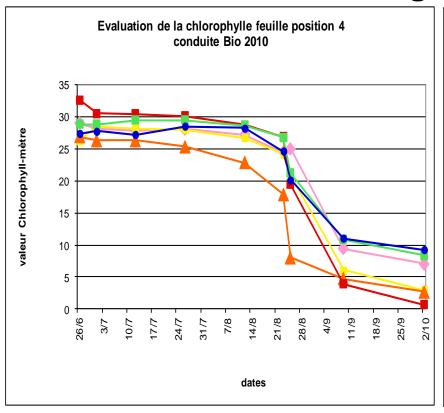
Croissance moyenne des rameaux 2010

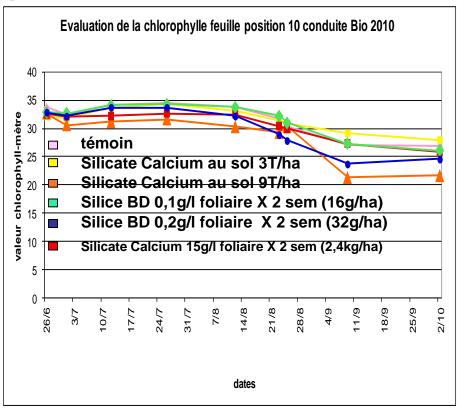

Evaluation de la croissance 2011

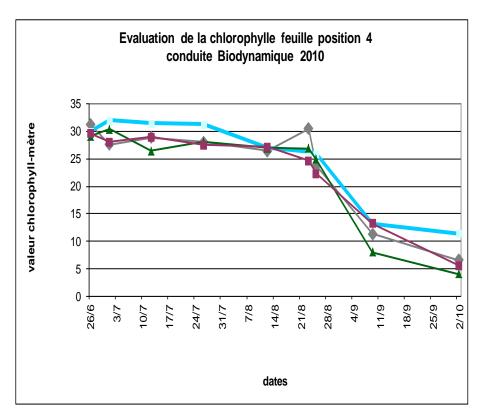
Croissance moyenne des rameaux de l'essai bio

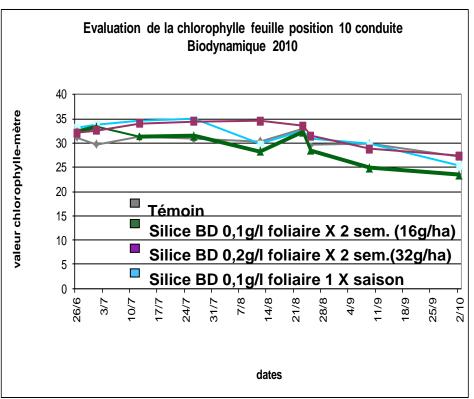
Evaluation de la croissance Bio 2012

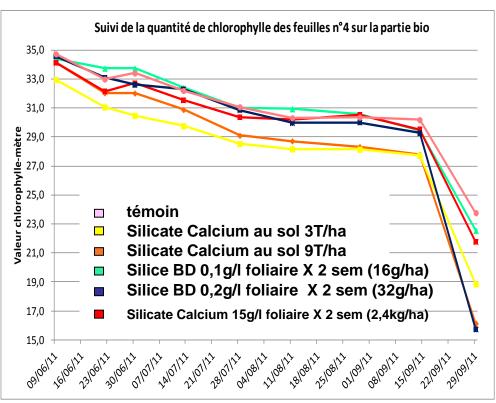
Croissance moyenne des rameaux de l'essai bio

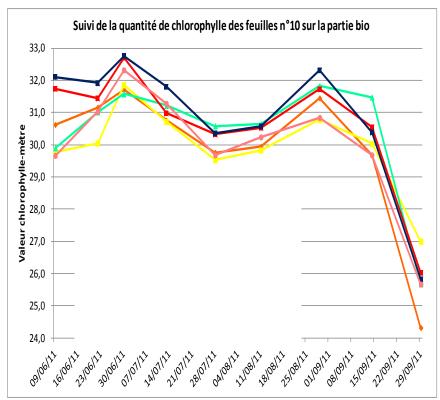

Evaluation de la chlorophylle, feuille no.4 et no.10

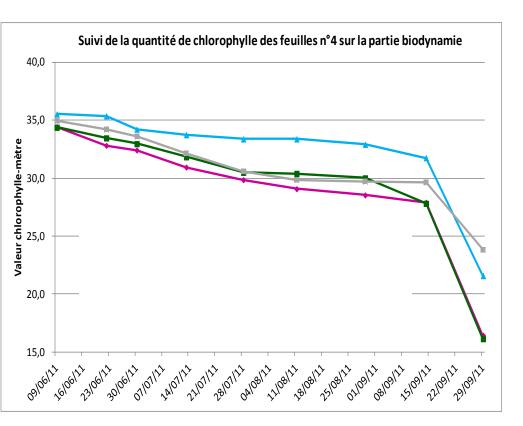

Feuille no. 10

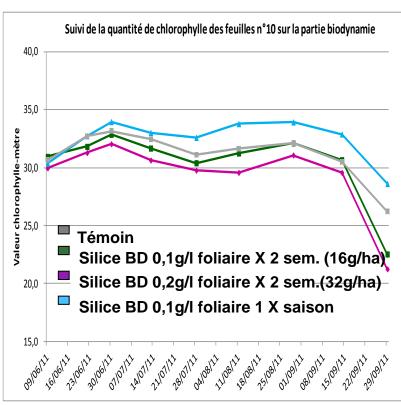

Feuille no. 4


Evaluation de la chlorophylle de la feuille no.4 et no.10 Biologique 2010

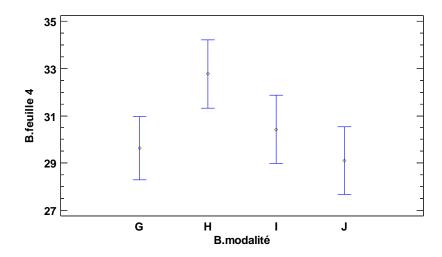


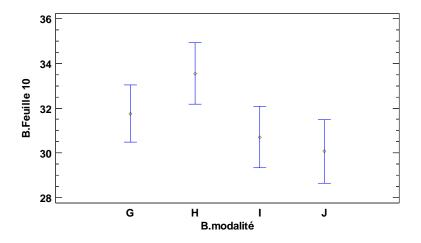

Evaluation de la chlorophylle de la feuille no.4 et no.10 Biodynamique 2010



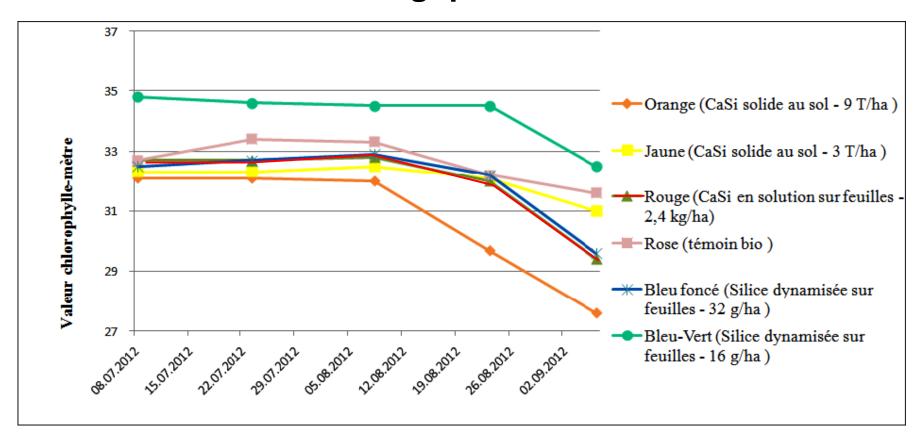

Evaluation de la chlorophylle de la feuille no.4 et no.10 Biologique 2011

Evaluation de la chlorophylle de la feuille no.4 Biodynamique 2011

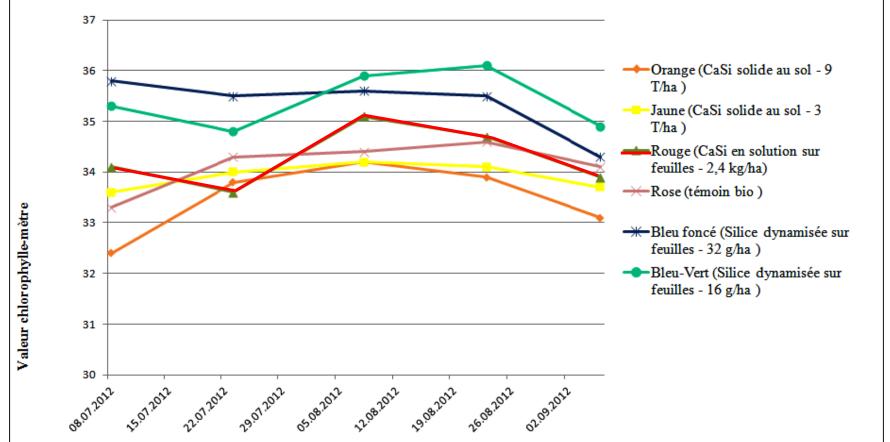



Graphique de l'évolution de la quantité de chlorophylle des feuilles de rang 4 sur la partie bio

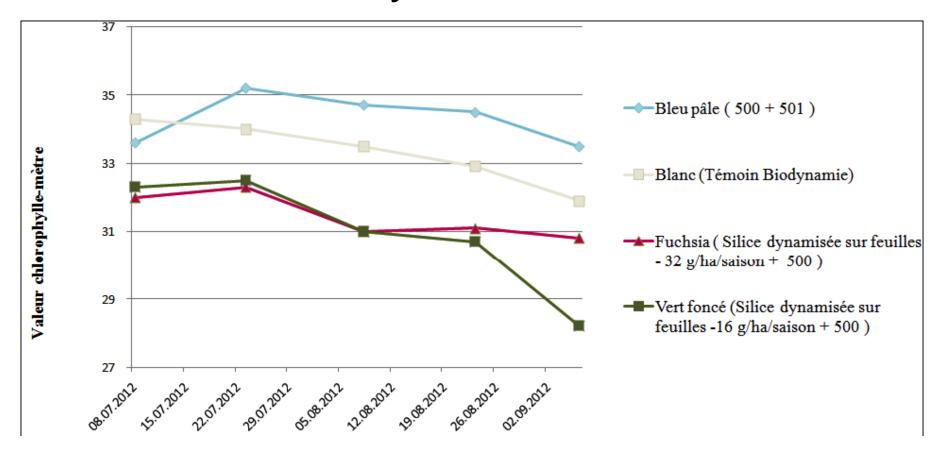
Chlorophylle de la feuille no.4 et no. 10 Biodynamique 11-8-2011


Moyennes et intervalles de confiance à 95,0% de Fisher LSD

Moyennes et intervalles de confiance à 95,0% de Fisher LSD

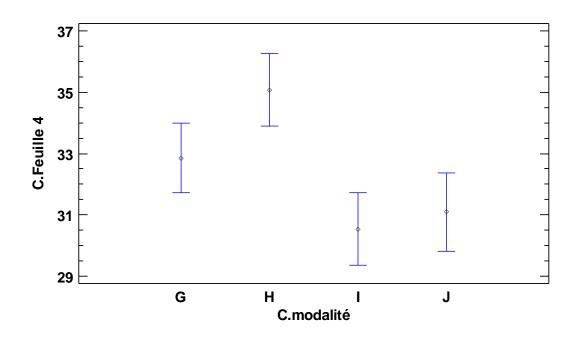


Evaluation de la chlorophylle de la feuille no.4 Biologique 2012

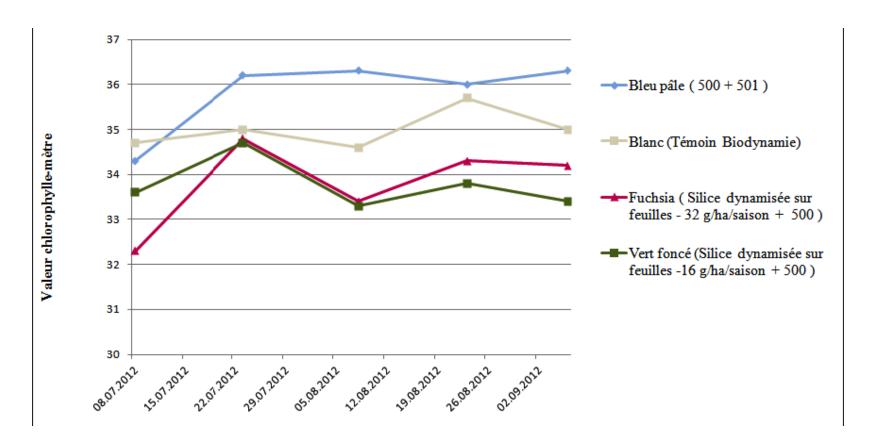

Graphique de l'évolution de la quantité de chlorophylle des feuilles de rang 4 sur la partie bio

Evaluation de la chlorophylle de la feuille no.10 Biologique 2012

Evolution de la quantité de chlorophylle des feuilles de rang 10 sur la partie bio

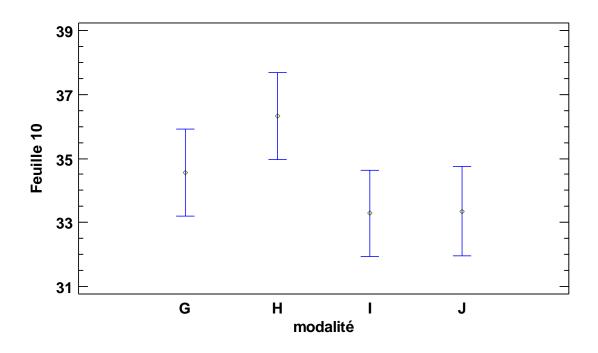

Evaluation de la chlorophylle de la feuille no.4 Biodynamie 2012

Evolution de la quantité de chlorophylle des feuilles de rang 4 sur la partie biodynamie


Evaluation de la chlorophylle de la feuille no.4 Biodynamie 23-8-2012

Moyennes et intervalles de confiance à 95,0% de Fisher LSD

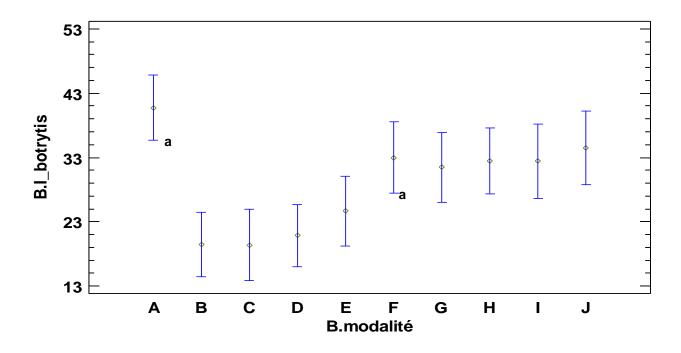
Evolution de la quantité de chlorophylle des feuilles de rang 4 sur la partie biodynamie


Evaluation de la chlorophylle de la feuille no.10 Biodynamie 2012

Evolution de la quantité de chlorophylle des feuilles de rang 10 sur la partie biodynamie

Evaluation de la chlorophylle de la feuille no.10 Biodynamie 8-8 2012

Moyennes et intervalles de confiance à 95,0% de Fisher LSD

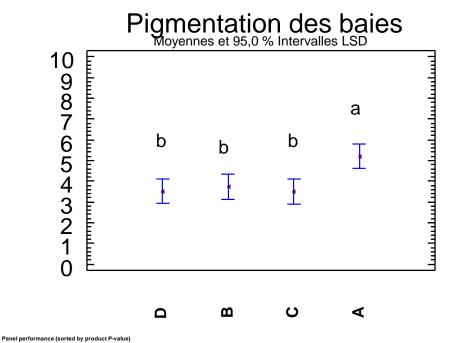

Evolution de la quantité de chlorophylle des feuilles de rang 10 sur la partie biodynamie

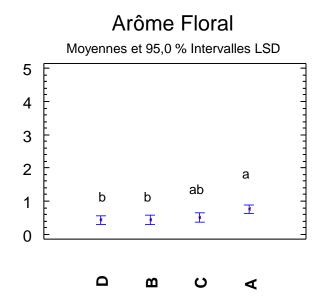
contexte problématique méthodes design expérimental Résultats perspectives

Incidence des maladies (Botrytis) sur grappe toutes modalités 2012

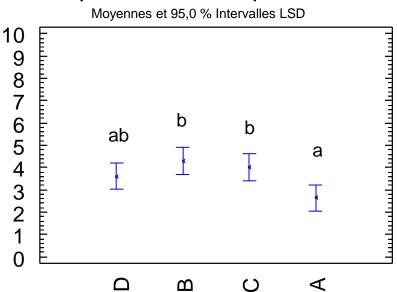

Incidence des maladies (Botrytis) sur grappe toutes modalités 2012

Moyennes et intervalles de confiance à 95,0% de Fisher LSD


Sévérité des maladies (Botrytis) sur grappe toutes modalités 2012

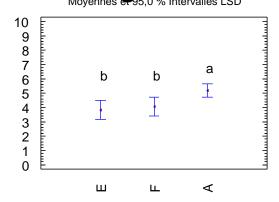

Moyennes et intervalles de confiance à 95,0% de Fisher LSD

Analyse sensorielle 2010


L'apport en Sca (sol ou feuillage) diminue signifi. la pigmentation des baies et l'arôme floral

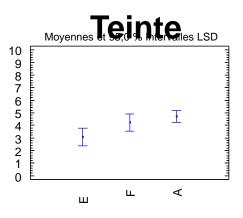
L'apport en Sca par le sol augmente signifi. l'épaisseur des pellicules

Epaisseur de la pellicule

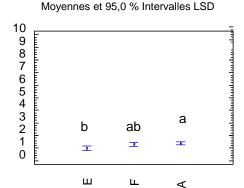


Panel performance (sorted by product P-value)

	ProductName	CJ	ProductName:CJ
A Pigm	0.01962	2.241e-10	0.03236
Te Epais	0.04311	8.023e-06	0.024
A Floral	0.0718	2.108e-08	0.9263
A Fruitb	0.0865	9.586e-18	0.3698
A_Fruita	0.1079	9.877e-27	0.03826
A Teinte	0.1194	0.01886	0.412
A_Vegetal	0.1337	0.01714	0.3002
A Moisi	0.1547	0.03801	0.1518
To Force	0.1587	7.471e-06	0.001442
Te Fermael	0.2286	8.801e-07	0.7096
To Qchpell	0.3024	1.627e-07	0.961
S Amerp	0.3218	1.138e-18	0.5253
S Acideb	0.3644	1.256e-08	0.7246
A Flet	0.3952	4.708e-05	0.6551
A Confit	0.4033	3.845e-05	5.303e-06
To Elast	0.4092	0.02814	0.002147
A Fruite	0.4305	0.0006559	0.8336
Te Dilacerat	0.4857	1.121e-09	0.4313
Te Croquant	0.4879	0.0001306	0.0008823
Te Gelatin	0.5211	0.001114	0.04067
S Sucreb	0.5936	2.701e-09	0.1966
Te Jutosité	0.6085	1.002e-08	0.8471
To Qchpedi	0.6255	7.332e-12	0.2789
S Acidep	0.6562	0.007257	0.7709
A Fruití	0.7946	8.011e-10	0.1266
A Champi	0.8696	0.5517	0.457
A Global	0.9922	1.547e-07	0.02198
S Astrinp	0.998	3.19e-05	0.7748

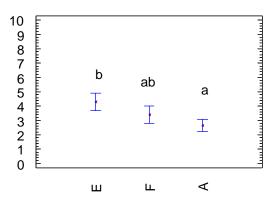

L'apport en Silice traité BioD diminue signifi. la pigmentation et l'arome floral des baies et leur confère une couleur jaune-verte

Pigmentation

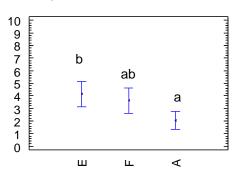


Panel performance (sorted by product P-value)

	DraduatNama	CI	DraduatNamaiC	modion
To Engie	ProductName	0.0005040	ProductName:CJ	median
Te_Epais	0.02441	0.0005312	0.3079	0.02441
A Teinte	0.03931	0.01645	0.0214	0.0214
To Force	0.04444	0.001094	0.2111	0.04444
A_Pigm	0.04528	1.782e-06	0.1737	0.04528
A_Flŏral	0.04778	7.949e-07	0.7723	0.04778
To Qchpell	0.08594	4.947e-08	0.4348	0.08594
To Elast	0.09104	0.001365	0.01831	0.01831
A Vegetal	0.1053	0.03673	0.2508	0.1053
S_Sucreb	0.1131	1.19e-07	0.5271	0.1131
A Flet	0.2062	0.002458	0.1712	0.1712
To Qchpedi	0.3067	5.407e-09	0.133	0.133
A Champi	0.3119	0.2525	0.7151	0.3119
Te Jutosité	0.3337	1.096e-09	0.1475	0.1475
A Confit	0.3529	0.0001587	0.002301	0.002301
S Astrinp	0.3885	0.03294	0.4724	0.3885
A Fruitb	0.4725	1.55e-11	0.4916	0.4725
S Amerp	0.536	6.42e-14	0.3174	0.3174
S Acideb	0.5523	2.017e-05	0.01955	0.01955
Te Fermael	0.563	0.004804	0.4919	0.4919
A Moisí	0.6192	0.5656	0.4253	0.5656
Te Gelatin	0.6734	0.01021	0.002198	0.01021
A Fruite	0.6877	9 217e-07	0.3493	0.3493
S Acideb	0.6977	3.611e-07	0.05183	0.05183
A Fruiti	0.8256	2.728e-07	0.6869	0.6869
A Fruita	0.873	2.1e-16	0.8057	0.8057
Te Croquant	0.9043	0.0009765	0.001617	0.001617
A Global	0.9203	2.659e-07	0.009056	0.009056
Te Dilacerat	0.9725	1.321e-05	0.1443	0.1443


Floral

L'apport à dose normale en Silice BioD augmente signifi. l'épaisseur des pellicules et la force nécessaire pour détacher le pédicelle


Epaisseur de la pellicule

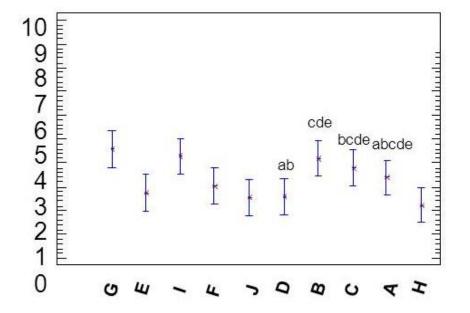
Moyennes et 95,0 % Intervalles LSD

Force pour détacher le pédicelle

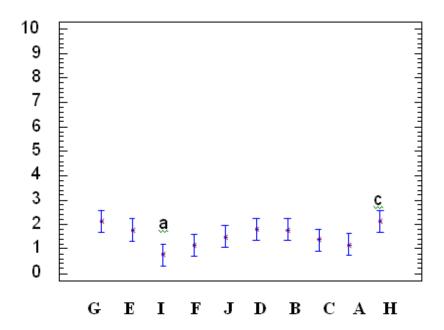
Moyennes et 95,0 % Intervalles LSD

Panel performance (sorted by product P-value)

	ProductName	CJ	ProductName:CJ	median
Te Epais	0.02441	0.0005312	0.3079	0.02441
A Teinte	0.03931	0.01645	0.0214	0.0214
To_Force	0.04444	0.001094	0.2111	0.04444
A Pigm	0.04528	1.782e-06	0.1737	0.04528
A_Flŏral	0.04778	7.949e-07	0.7723	0.04778
To Qchpell	0.08594	4.947e-08	0.4348	0.08594
To Elast	0.09104	0.001365	0.01831	0.01831
A Vegetal	0.1053	0.03673	0.2508	0.1053
S Sucreb	0.1131	1.19e-07	0.5271	0.1131
A Flet	0.2062	0.002458	0.1712	0.1712
To_Qchpedi	0.3067	5.407e-09	0.133	0.133
A Champi	0.3119	0.2525	0.7151	0.3119
Te Jutosité	0.3337	1.096e-09	0.1475	0.1475
A Confit	0.3529	0.0001587	0.002301	0.002301
S Astrinp	0.3885	0.03294	0.4724	0.3885
A Fruitb	0.4725	1.55e-11	0.4916	0.4725
S_Amerp	0.536	6.42e-14	0.3174	0.3174
S_Acidep	0.5523	2.017e-05	0.01955	0.01955
Te Fermgel	0.563	0.004804	0.4919	0.4919
A Moisí	0.6192	0.5656	0.4253	0.5656
Te Gelatin	0.6734	0.01021	0.002198	0.01021
A_Fruite	0.6877	9.217e-07	0.3493	0.3493
S_Acideb	0.6977	3.611e-07	0.05183	0.05183
<u>A Fruiti</u>	0.8256	2.728e-07	0.6869	0.6869
A_Fruitá	0.873	2.1e-16	0.8057	0.8057
Te_Croquant	0.9043	0.0009765	0.001617	0.001617
_ A_Global	0.9203	2.659e-07	0.009056	0.009056
Te_Dilacerat	0.9725	1.321e-05	0.1443	0.1443


Analyse sensorielle 2011

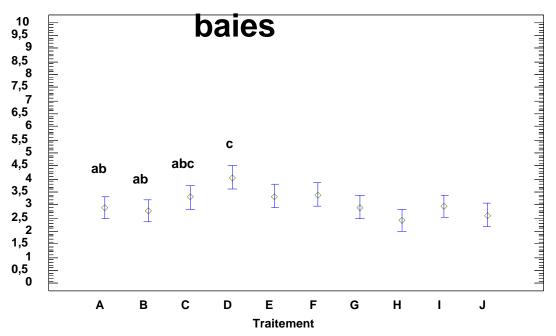
L'apport en Silicate de calcium au sol augmente le croquant des baies alors que l'apport sur le feuillage le diminue


Augmentation de la fréquence d'apport en silice biodynamique (501) additionné à la préparation BD500 diminue la quantité de chair collée sur la pellicule des baies

Aucune caractéristique aromatique n'a été discriminante sur les haies de raisin en 2011

Croquant de la baie

Quantité de chaire sur la pellicule



Analyses sensorielle toutes modalités 2012

L'apport en silicate de calcium au niveau du feuillage donne des baies plus marron que dans le cas d'un apport au sol



Analyses sensorielle toutes modalités 2012

l'apport en silicate de calcium au niveau du feuillage donne des baies plus marron que dans le cas d'un apport au sol

Teinte des

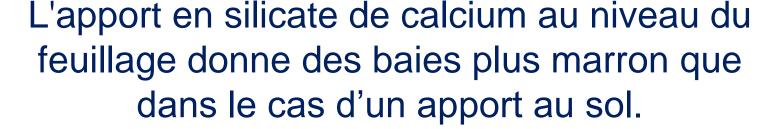
Une vision globale du jeu de données 2012

4 descripteurs discriminants à 5% :

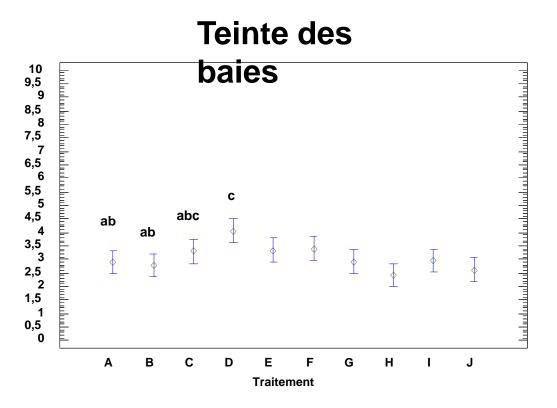
Au niveau de la baie :

- -Teinte
- -Croquant

Au niveau de la pellicule :

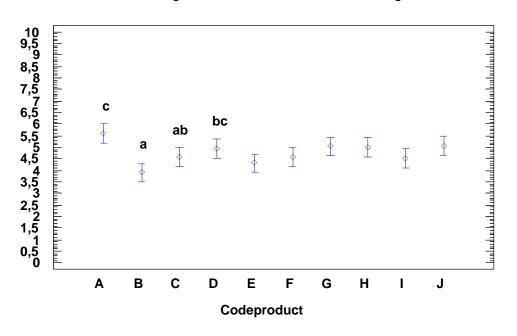

- -Dilacération de la pellicule
- -Epaisseur de la pellicule en bouche

Attribut	produit 🔻	juge	juge:produit
Te_epais	0,00758962	2,54E-14	0,977815009
A_Teinte	0,01735785	1,22E-10	0,058896658
Te_Dilacerat	0,0287189	4,28E-13	0,902577507
Te_Croquant	0,03507846	5,17E-12	0,019268642
S_Astrinp	0,12271745	5,21E-39	0,994255528
A_Global	0,12326045	2,76E-36	0,568426009
A_Vegetal	0,13477128	6,00E-36	2,33E-06
A_Confit	0,13929155	2,11E-28	0,369366039
A_Champi	0,20456427	8,30E-67	1
To_Qchpell	0,21476965	4,03E-32	0,994829489
A_Pigm	0,43485064	7,76E-20	0,093289614
A_Flet	0,48610189	1,02E-28	0,919579898
To_Force	0,49075907	3,92E-14	0,348228119
To_Qchpedi	0,50351443	3,48E-37	0,580444902
S_Sucreb	0,51173051	6,80E-23	0,018313
To_Elast	0,51259207	1,94E-27	0,017554655
A_Floral	0,51948812	1,71E-53	6,73E-09
Te_Fermgel	0,60447731	3,57E-17	0,340610477
A_Fruitb	0,67451168	7,92E-44	0,671818462
S_Acideb	0,7173589	1,80E-24	0,117295482
A_Fruita	0,75365535	4,14E-55	0,999974652
A_Fruitj	0,77213078	2,71E-43	0,998438765
Te_Jutosité	0,80758747	1,18E-22	0,048645241
S_Acidep	0,82771049	5,33E-59	0,911548927
A_Fruite	0,95301855	5,68E-36	6,13E-05


Modèle ANOVA:

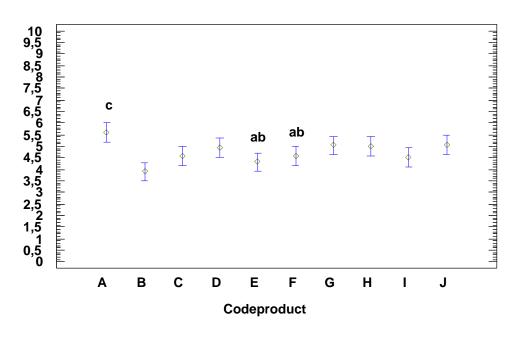
Des= Trt + Juge + Trt x NJuge + erreur

L'apport en silicate de calcium (sol et feuillage) diminue l'épaisseur de la pellicule des baies



Epaisseur de la pellicule

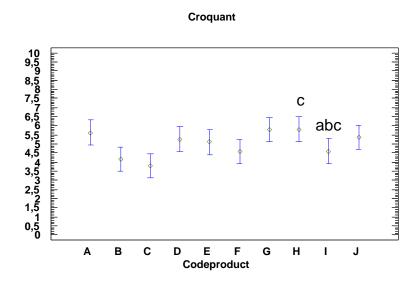
L'apport de silice BD501 diminue l'épaisseur de la pellicule des baies



Epaisseur de la pellicule

L'apport de silice BD501 influence légèrement la dilacération et l'amertume de la pellicule (à 10%)

Pas d'impact de l'apport en Silice traité biodynamiquement et de la dose sur le croquant, la teinte des baies

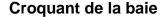


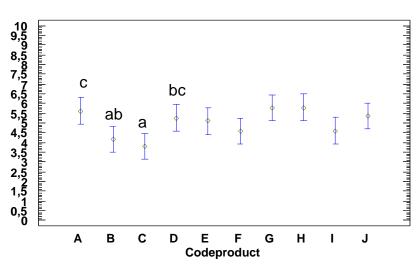
L'augmentation de la fréquence d'apport en Silice additionnée à la prepa 500 diminue le croquant (p=0,08)

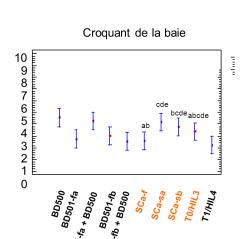
Moyennes et intervalles LSD à 95,0%

Impact aussi sur l'astringence de la pellicule (p=0,09)

Zone BioDynamie

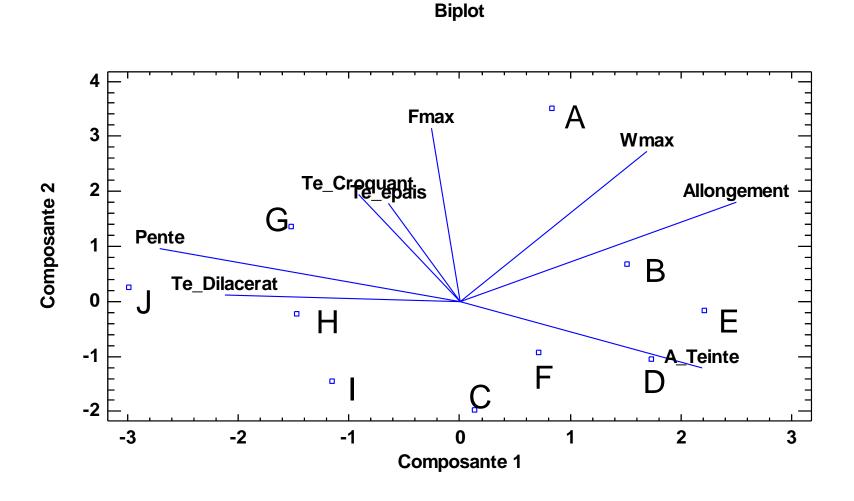




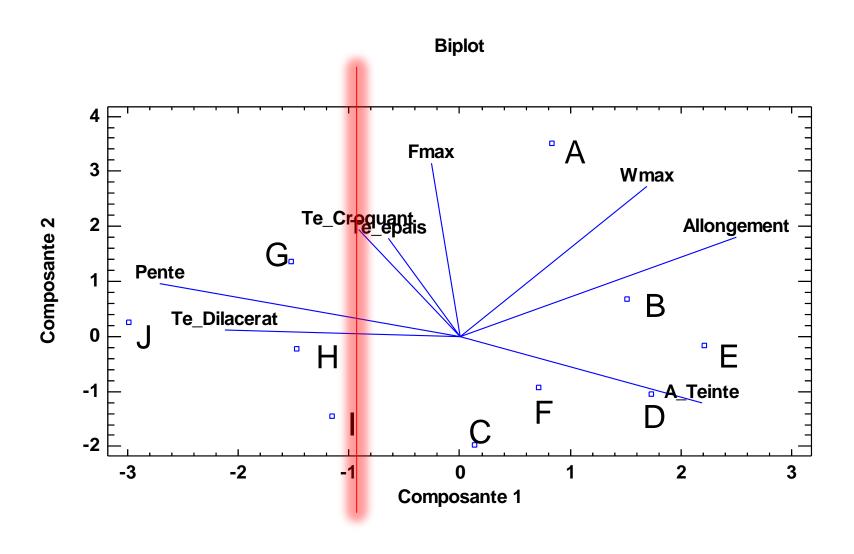


L'apport en Sca au sol diminue le croquant des baies

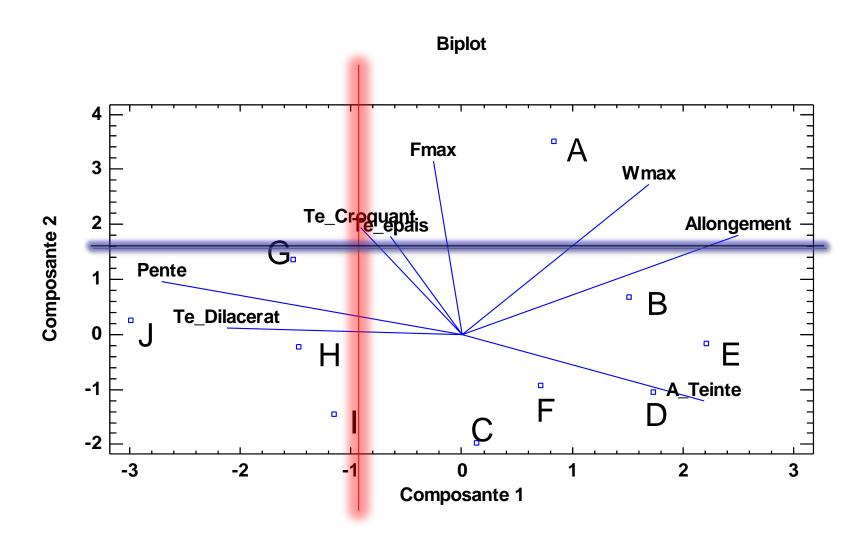
Moyennes et intervalles LSD à 95,0%



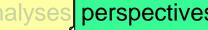
L'apport en Sca au feuillage augmente le croquant des baies alors que <u>l'apport au niveau du sol le diminue</u>


Impact du Sca sur feuillage pour le croquant : tendance 2011= inverse de 2012

ACP résultats pénétrométrie et sensoriel paramètres significatifs



ACP résultatspénétrométrie et sensoriel paramètres significatifs



ACP résultatspénétrométrie et sensoriel paramètres significatifs

-Apport de silice montre impact sur vigne et baies, analyser plus précisément les effets.

Contribuer à une meilleure compréhension des effets de la silice sur la vigne, raisin, vin.

- -Collaborer à développer des pratiques viticoles respectueuses de l'environnement
- -Coopérer à une diminution des intrants au vignoble

M. Meunier, R. Siret, A.Billé S. Rogiers, G. Gurr

Bibliographie

Bouzoubaâ, Z., Ait Lhaj, A. et Mimouni, A., (2009). Le silicium; levier minéral indispensable pour une agriculture durable du Maroc, Symposium international « Agriculture durable en région Méditerranéenne », Maroc, 14-16 mai 2009

Heckman, J.R., and Woolf (2009). Recommenended soil testing procedures for the Northeastern United States. http://ag.udel.edu/extension/agnr/soiltesting.htm, visited on the 30 November 2010.

Ma, JF, et Yamaji, N., (2006). Silicon uptake and accumulation in higher plants, *Trends in Plant Science 11*, 392-397.

Gouvernement Canada: http://www.google.fr/imgres?imgurl=http://www.inspection.gc.ca/DAM/DAM-plants-vegetaux/STAGING/images-images/pestrava_graphy_factsheet_image2_1326140404261_fra.gif&imgrefurl=http://www.inspection.gc.ca/vegetaux/protection-des-vegetaux/maladies/jaunisse-de-la-vigne/guide-d-

identification/fra/1326143947606/1326144092300&h=995&w=650&sz=454&tbnid=Xwwa4dnatOMp1M:&tbnh=90&tbnw=59&zoom=1&usg=__HBzWLGPX4tdCsx5xM6559f69p5g=&docid=-tS-RSheqgTHyM&hl=fr&sa=X&ei=O2PPUKbsHPHB0gW4wlHwDQ&ved=OCEwQ9QEwBg&dur=1094