

Projet Stress hydrique

Stress hydrique et qualité des vins du Centre Val de Loire 2020-2023

La Recherche Vous Parle 2023 19/12/2023

Le projet

Contexte du changement climatique

Changement de répartition de la pluviométrie

Demande hydrique plus élevée

Episodes de sécheresse plus nombreux plus intenses

Objectifs

- la qualité des raisins (matière première)
- les caractéristiques des vins (produits finis), sur Sauvignon

Résultats

Présentation synthétique de quelques résultats, tous les résultats en accès

Le projet

Action 1

Déterminer le choix de parcelles, sur des critères liés au bilan hydrique et au type de sol

Action 2 : 3 campagnes de mesures → 2020 / 2021 / 2022

- Mesures liées au régime hydrique
- Mesures des données agronomiques : rendement, qualité des raisins

Action 3 : 3 campagnes de mesures → 2020 / 2021 / 2022

Suite aux vinifications sur vins finis : d'analyses physicochimiques et analyses sensorielles aromatiques

Analyse des résultats pour déterminer quelles corrélations entre :

- les niveaux mesurés de stress
- la qualité des raisins et les analyses sur les vins

Action 5: communication

Méthode

Constitution d'un réseau de parcelles : une étape complexe

1ère sélection : 37 parcelles choisies pour leurs niveaux de contraintes hydriques contrastés, et type de sol

Enquête auprès des vignerons

- en 2020 sélection de 12 parcelles : 6 Sauvignon + 6 Gamay
- → Fin 2020 : résultats sur gamay non pertinents => abandon
 - sélection de 6 nouvelles parcelles de Sauvignon B
- → TOTAL : 12 parcelles de sauvignon sélectionnées

En 2021 : GEL/GRELE

certaines parcelles sans production, choix de nouvelles parcelles

- →2021 : un réseau « définitif » de 12 parcelles de Sauvignon Blanc
- réseau identique en 2021 et 2022 mais seulement 4 analysées en 2020

Une première action plus complexe/chronophage que prévue : la réalité et donc l'intérêt d'expérimentation en conditions réelles

Méthodes: mesures du stress hydrique

Indicateurs hydriques : 4 méthodes différentes pour visualiser au mieux la réalité

Bilan Hydrique WALIS:

Modèle qui estime la fraction d'eau disponible dans le sol à partir d'une 40aines de paramètres (proportion couverture du sol par enherbement, hauteur, porosité du feuillage ...

MESURES TOUTE
L'ANNEE, une valeur par
jour et par parcelle

Méthode des APEX:

Mesure de la croissance de la plante liée à l'eau disponible par le comportement de son APEX

> ROBUSTE AVANT ROGNAGE

Potentiel hydrique Foliaire

Mesuré via des chambres à pression : mesure de la sève extractible d'une feuille lors d'une mise sous pression => état hydrique dans lequel se trouve le végétal

MESURE PENDANT TOUTE

PERIODE VEGETATIVE

Delta C13

Mesure sur moût du ratio C13/C12, ratio modifié suite à a fermeture des stomates qui donne une information sur le stress hydrique subit pendant la fructification

INFORMATION A POSTERIORI

Méthodes

Mesures réalisées sur la vigne, le raisin et le vin

- Rendement (kg/cep)
- Etat sanitaire à la récolte
 => pour analyser l'impact
 sur le rendement qui
 peut fausser l'analyse

- Analyses réception vendanges (DO, turbidité, clarification, Azote assimilable)
- Analyses physico chimiques sur moût, fin Fa, à la mise
- Suivi des cinétiques fermentaires

- Analyses aromatiques des vins finis
- Analyses sensorielles des vins finis

Nombreuses données à partir de toutes les mesures décrites

Parcelle par parcelle

Millésime par millésime

Tous les résultats ne sont pas présentés

Objectifs

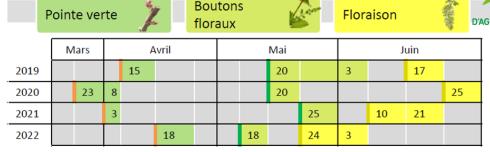
Caractériser les millésimes d'étude

Corréler ces données

Déterminer l'impact du stress hydrique

Résultats en moyenne

Caractérisation des millésimes d'étude


1 – Météorologie et stades phénologiques

20	20	20	021	2022							
Pluie	T°C moy	Pluie	T°C moy	Pluie	T°C moy						
(mm)	(°C)	(mm)	(°C)	(mm)	(°C)						
630,8	13,1	683,5	11,6	571,0	13,1						

+52,7mm

-112,5mm

BILAN DES STADES PHÉNOLOGIQUES

Fermeture de grappe	Véraison		Vendanges précoces	
Juillet	Août	Se	ptembre	Octobr

		Ju	illet		Août				Septembre			Octobre			
2019			15			15	20			12					
2020		8					20	28		15					
2021				26				26				24		15	
2022	4					15		28				30			

- T°C annuelle moy 2020 / 2022 identique
- Saison végétative : très différentes
 - 2022 **T°C moy = 18,4°C**
 - contre **17,7°C en 2020**
- T°C annuelle moy 2021 plus basse (-1,5°C)
 - Saison végétative : 15,9 °C
- Régime de précipitations très contrasté

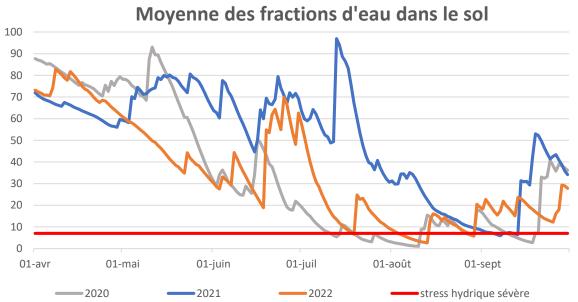
Stades phénologiques très différents pour les 3 millésimes

Ex : fermeture de grappes

2020 : 8 juillet

2021 : 26 juillet

2022 : 4 juillet


Trois millésimes météorologiques vraiment différents

Résultats en moyenne

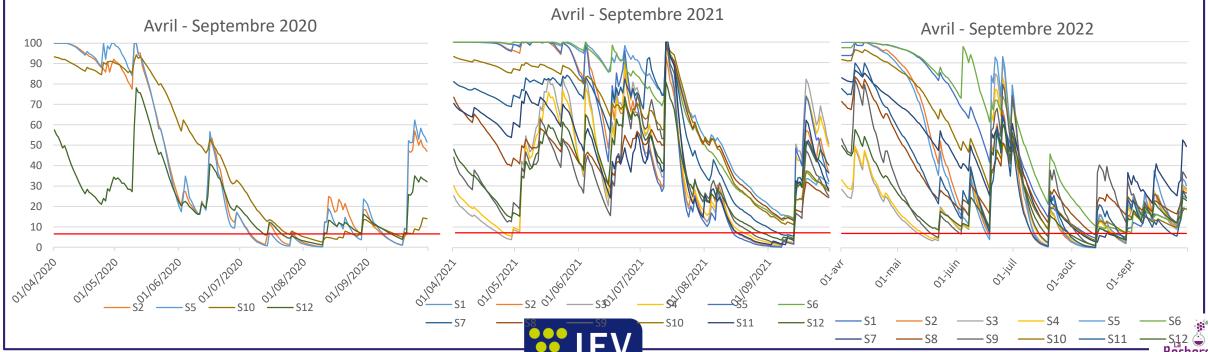
Caractérisation des millésimes d'étude

2 – Fraction d'eau disponible modèle WaLis

Dynamique des Moyennes des parcelles des fractions en eau du sol très différentes pour les 3 millésimes

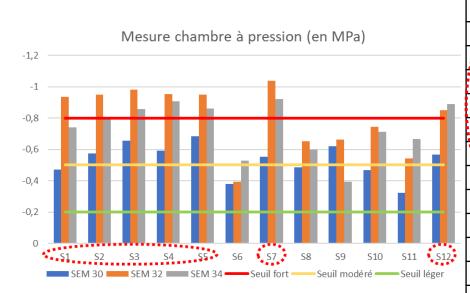
CONCLUSION: caractérisation des millésimes

→ Météo + stade phénologique + FFTWS = Caractérisation des 3 millésimes d'étude



Résultats par parcelle

Indicateurs hydriques (résultats 2020-2021-2022)


- Modèle Hydrique Walis par parcelle sur les 3 millésimes
- => Une très grande variabilité par parcelles
- Apparition de stress hydrique de plus en plus précocement dans la saison (S3, S4): possible seulement avec le bilan hydrique, pas d'autres outils pour le visualiser en temps réel
- o En 2022 :
 - 1^{er} épisode estival: S1, S2, S3, S4, S5, S9, S11, et S12, rejoint dans un second temps par S7, S10, S8
 - S6 ne passera jamais sous le seuil du stress hydrique sévère (ligne rouge)

Résultats par parcelle

Indicateurs hydriques (résultats 2022)

- Résultats 2022, année intéressante de stress hydrique, les Indicateurs hydriques :
 - → permettent un classement des parcelles de la plus stressée à la moins stressée
 - → Contrainte hydrique avec les deux outils de mesures, Potentiel de base et Delta C13, bien corrélée
- Complexité des indicateurs hydriques
 - → Pas de recoupement avec la méthode des APEX (résultats non présentés)
 - → Croisement aussi avec bilan hydrique mais moins précis avec parfois des écarts

Modalité	Delta	Explication DELTA					
C13		C13		l	 		Rang
7	-22,92	Modéré à fort	Modalité	Rang delta C13	Rang CAP32	Rang WaLis	pluviométrie
5	-23,47	Léger à modéré	1	3	6	2	juillet aout 4
1	-23,54	Léger à modéré	2	6	5	(12)	3
3	-23,65	Léger à modéré	3	4	2	4	5
12	-24,47	Léger à modéré	4	7	3	8	8
2	-24,91	Léger	5	2	4	1	2
			6	11	12	(3)	10
4 .	-25,12	Léger	7	1	1	9)	1
10	-25,40	Léger	8	10	10	7	9
9	-26,24	Absence	9	9	9	10	12
_			10	8	8	11	11
8	-26,40	Absence	11	12	11	5	7
6	-26,81	Absence	12	5	7	6	6
11	-27,98	Absence					•

Résultats par parcelle

Corrélation entre indicateurs hydriques et impact sur le rendement 2022

Pas de corrélation stricte : Explications ?

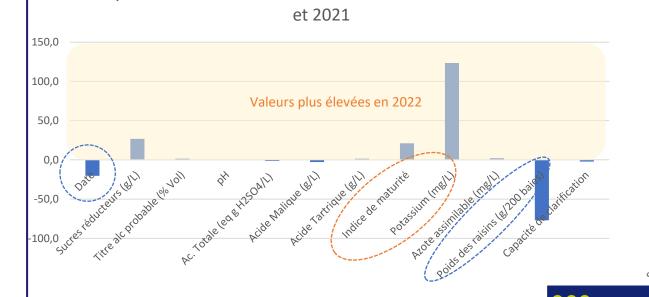
Modalité	RDT (kg/cep)	Azote assimilable (mg/L)	Delta C13		
(1)	1,9	179	-23,54		
2	1,48	208	-24,91		
(3)	0,72	62	-23,65		
4	1,33	49	-25,12		
(5)	0,72	98	-23,47		
6	2,31	179	-26,81		
(7)	1,93	228	-22,92		
8	0,87	21	-26,40		
9	0,33	73	-26,24		
10	2,2	124	-25,40		
11	2,24	128	-27,98		
. 12	0,74	+ 2057	-24,47		

SH + faible Nass = faible rendement

SH + fort Nass = bon rendement

HYPOTHESE

Un bon fonctionnement du sol, fournissant suffisamment d'azote à la vigne pourrait pallier aux pertes de rendement dans le cas de contrainte hydrique légère à modérée


Facteur Maladie > Fonctionnement sol > Stress hydrique ?

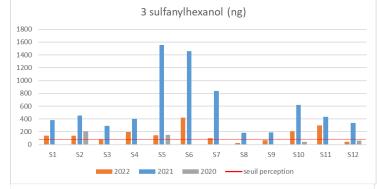
- Millésime peu stressant 2021 : les faiblés rdt sont liés à la forte pression sanitaire
- Millésime stressant 2022
 - → Les parcelles avec le plus fort rdt = absence de Stress Hydrique → S6, S11, S10
 - → Les parcelles S8 et S9 : perte de rendement liée au mildiou
 - → Les parcelles avec une contrainte hydrique peuvent avoir un rdt élevé ou bas : impact du sol et Nass

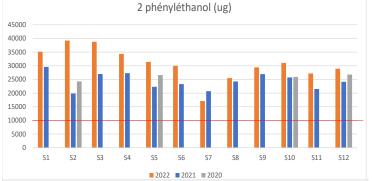
Impact sur le vin (2021 et 2022) : contrainte hydrique ou T°C élevées ?

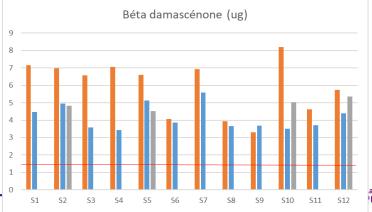
- Nombreux résultats sur analyses physico chimiques des vins
- Durée FA 2022 > 2021 => lien avec les teneurs en sucres. Matière première plus complexe dans le cas du millésime 2022 et niveaux de maturité plus élevés
- Pas de résultat pour les DO => facteur durée FA > contrainte hydrique

Moyenne de la différence des indicateurs "raisins" entre 2022

Moyenne de la différence des indicateurs "vins" entre 2022 et 2021

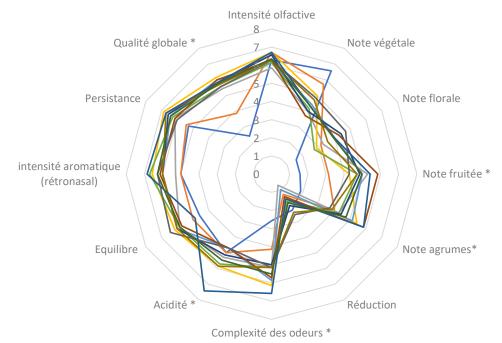

Impact sur le vin (2021 et 2022) : contrainte hydrique ou T°C


élevées?


Pour 2021, plus forte concentration du 3-sulfanyhexanol (SP: 60μg/L), arôme variétal de pamplemousse, bien plus présent que lors d'un millésime stressant comme 2022.

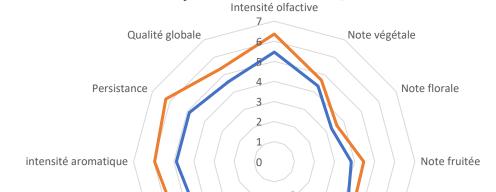
Pour 2022,

- teneur en 2-phényléthanol (arôme de rose, SP : 10 000 μg/L) supérieure sur l'ensemble des parcelles, sauf S7(la plus stressée mais FA la plus courte)
- des teneurs plus élevées pour les molécules Maltol et Homofuranéol (descripteurs caramel / sucre cuit) lié aux maturités plus élevées, aux teneurs en sucres plus importantes et aux FA plus longues en 2022 qu'en 2021.
- teneur en β- Damascénone, molécule responsable des arômes de coing et ayant un rôle d'exhausteur de l'arôme fruité, est plus élevée



Analyses sensorielles : contrainte hydrique ou T°C élevées ?

o Fortes différences selon les millésimes. Corrélation possible avec le stress hydrique mais causalité entre


différents facteurs encore à affiner

Notes moyennes de dégustation vins 2022

2022	s1	s2	s3	s6	s9	s10	s12	s7	s11	s5	s8	s4
Qualité globale	2,43	3,86	5,43	5,57	5,57	5,71	5,71	5,86	5,86	6,00	6,00	6,14
d13C	-23,54	-24,91	-23,65	-26,81	-26,24	-25,40	-24,47	-22,92	-27,98	-23,47	-26,40	-25,12

_____S2 ____S3 ____S4 ____S5 ____S6 ____S7 ____S8 ____S9 ____S10 ____S11 ____S12

Movenne des vins 2021 / 2022

- les vins 2021 jugés plus acides que les vins de 2022

Note agrumes

Réduction

Equilibre

____2022 ____2021

- Vins 2022 jugés plus intense aromatique et olfactive

→ Le SH de 2022, a permis d'obtenir des vins plus aromatiques, plus équilibrés avec une acidité moindre, et jugés donc plus favorablement que les vins 2021 sans SH.

Projections

Les pistes d'améliorations

Complexité du sujet + projet sur 3 ans : dans le cas de projet sur les aléas climatiques, soumis au bon vouloir du millésime

- Observatoire de parcelles suivi dans le temps, échelle > 3 ans

- Adapter les mesures selon les conditions du millésime : certaines années certaines mesures ne sont pas nécessaires

Dimensionnement du projet : un cépage sur zone du 41, sans accès E-terroir : manque l'information sol poussé

- Parcelles sur l'ensemble du Val de Loire

Faiblesse en termes d'indicateurs fiables, robustes, à disposition facilement du vigneron

- Amélioration de l'outil du Bilan Hydrique WaLis sur le bassin Val de Loire

Pas de travail sur le pilotage possible pour les vignerons

- Sensibilisation et anticipation à la plantation

- Pilotage couverture du sol
- Intérêt des biostimulants

→ DEPOT PROJET HYDROVIGNOBS, multipartenaires, à l'échelle du bassin

Merci à tous

